首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
新型分阶段粒子群优化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对粒子群优化算法的“早熟”问题,提出了一种新型分阶段粒子群优化算法。该算法通过调整惯性权重和加速系数使粒子自组织地跟踪局部吸引域和全局吸引域来扩大粒子的搜索空间和提高粒子的收敛精度,同时根据粒子处于不同的阶段实施相应的变异策略来增加种群的多样性。通过经典函数的测试结果表明,新算法的全局搜索能力有了显著提高,并且能够有效避免早熟问题。  相似文献   

2.
粒子群优化算法中加速系数的实验分析   总被引:1,自引:1,他引:1       下载免费PDF全文
基于粒子群优化的原理,利用标准测试函数对粒子群算法的参数设计进行实验分析,依据函数特性进行初步分类,揭示不同类型优化问题中加速系数与惯性权重的相互关系及其设计规律。该项研究成果为粒子群算法的理论研究提供了实验依据,并为算法的实际应用创造了有利条件。  相似文献   

3.
基于粒子群优化算法的电力系统无功优化   总被引:1,自引:0,他引:1       下载免费PDF全文
陶国正  徐志成 《计算机工程》2010,36(20):198-199
针对粒子群优化算法在进化中随种群多样性降低易出现早熟收敛等问题,结合全局-局部最优模型,提出一种改进的全局-局部参数最优粒子群优化算法。利用全局-局部最优惯性权重及全局-局部最优加速度常数,简化速度更新方程,使算法性能得到改善。将该算法应用于电力系统无功优化中,仿真结果表明,网损平均值更低,寻优性能更好,优化的网损值集中在较小的区间。  相似文献   

4.
具有综合学习机制的粒子群算法   总被引:1,自引:0,他引:1       下载免费PDF全文
基本粒子群算法在模拟生物群体智能时,只有信息的单一传递和强迫学习机制,导致群体迅速收敛和种群的多样性降低。为此,提出一种具有综合学习机制的粒子群算法,将所有粒子的个体极值的平均值取代每一粒子的个体极值,并以自适应概率定向地随机变异全局极值。仿真实验表明,新算法解精度高,收敛速度快,能有效抑制过早收敛。  相似文献   

5.
针对传统粒子群优化算法在求解复杂优化问题时易陷入局部最优和依赖参数的取值等问题,提出了一种独立自适应参数调整的粒子群优化算法。算法重新定义了粒子进化能力、种群进化能力以及进化率,在此基础上给出了粒子群惯性权重及学习因子的独立调整策略,更好地平衡了算法局部搜索与全局搜索的能力。为保持种群多样性,提高粒子向全局最优位置的收敛速度,在算法迭代过程中,采用粒子重构策略使种群中进化能力较弱的粒子向进化能力较强的粒子进行学习,重新构造生成新粒子。最后通过CEC2013中的10个基准测试函数与4种改进粒子群算法在不同维度下进行测试对比,实验结果验证了该算法在求解复杂函数时具有高效性,通过收敛性分析说明了算法的有效性。  相似文献   

6.
新型的动态粒子群优化算法   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解决动态改变惯性权重的自适应粒子群算法不易跳出局部最优的问题,提出了一种自适应变异的动态粒子群优化算法。在算法中引入了自适应学习因子和自适应变异策略,从而使算法具有动态自适应性,能够较容易地跳出局部最优。对几种典型函数的测试结果表明,该算法的收敛速度明显优于文献算法,收敛精度也有所提高。  相似文献   

7.
孔姝睿  刘淑芬 《测控技术》2017,36(11):66-69
针对飞行器航路规划问题,提出了一种改进粒子群算法.在标准粒子群算法的基础上,对惯性权重系数进行了非线性的调整,对学习因子进行线性和非线性的优化,并引入遗传算法中的交叉算子,将较好粒子与较差粒子进行交叉,保证了种群的多样性,从而提高算法的全局搜索能力.为了验证算法的可行性与有效性,对其进行仿真测试.实验结果表明,与标准粒子群算法、线性惯性权重相比,改进的粒子群算法表现出较强的全局搜索能力和较好的收敛性.  相似文献   

8.
针对惯性权重线性递减粒子群算法不能适应复杂的非线性优化搜索过程的问题,提出了一种基于Sigmoid函数和聚集距离变化率改变惯性权重的方法。为了解决算法后期易陷入局部最优的缺点,在算法后期引人了具有记忆能力的禁忌搜索算法。改进后的算法不仅综合了粒子群优化算法的快速性、随机性和全局收敛性的优点,而且还具有禁忌搜索局部寻优的能力。测试函数仿真结果表明,改进后的算法不仅较好地避免了陷入局部最优,而且收敛速度也有提高。  相似文献   

9.
基于改进粒子群算法的BP算法的研究   总被引:4,自引:0,他引:4  
针对BP算法的缺陷以及标准粒子群算法优化BP网络权值的不足,为了提高算法的全局搜索能力,提出了基于自适应动态调整惯性权重的粒子群算法的BP网络算法.算法根据适应度值的改变情况来调整惯性权重,使惯性权重的改变不依赖于最大迭代次数和当代迭代次数,从而使整个网络具有较快的收敛速度和较小的误差.将算法应用于海参疾病的诊断中.实验发现,基于自适应动态调整惯性权重的粒子群算法的BP算法比基本粒子群算法的BP算法收敛速度快,算法的准确率也比较高,同时改进算法训练的BP网络也比基本粒子群算法训练的BP网络稳定.仿真证明,自适应动态调整惯性权重的粒子群算法对BP算法的优化优于基本粒子群算法.  相似文献   

10.
改进的粒子群算法对RBF神经网络的优化   总被引:3,自引:0,他引:3       下载免费PDF全文
为了改进神经网络模型结构和参数的设置方法,提出了一种改进的粒子群优化径向基函数(RBF)神经网络的方法。该方法通过动态调整粒子群算法中的惯性权重因子,提高了算法的收敛速度和搜索全局最优值的能力。实验结果表明:基于改进的PSO算法训练的神经网络在函数逼近性能上优于自组织选取中心算法与标准PSO算法,提高了网络泛化能力和优化效果,有效地增强了网络对非线性问题的处理能力。  相似文献   

11.
基于禁忌搜索的自适应粒子群算法   总被引:1,自引:1,他引:1  
针对惯性权重线性递减粒子群算法不能适应复杂的非线性优化搜索过程的问题,提出了一种基于Sigmoid函数和.聚集距离变化率改变惯性权重的方法.为了解决算法后期易陷入局部最优的缺点,在算法后期引入了具有记忆能力的禁忌搜索算法.改进后的算法不仅综合了粒子群优化算法的快速性、随机性和全局收敛性的优点,而且还具有禁忌搜索局部寻优的能力.测试函数仿真结果表明,改进后的算法不仅较好地避免了陷入局部最优,而且收敛速度也有提高.  相似文献   

12.
在传统的线性递减惯性权重(LDW)粒子群算法的基础上,提出一种新的引入粒子密度因子的粒子群算法。该算法根据粒子平均适应度值和社会最优适应度值,采用径向基函数形式来度量粒子群在最优值附近的聚集程度。在进化过程中,当密度因子大于一定值时,在LDW惯性权重因子中加入扰动项,使粒子群重新散开,从而跳出局部极值,避免算法出现早熟现象。基于Benchmark函数库的仿真实验表明,该算法一定程度上避免了算法过早收敛,尤其是在高维和多极值情况下性能明显优于传统PSO算法。  相似文献   

13.
粒子群优化算法在函数优化中的应用及参数分析   总被引:2,自引:1,他引:1       下载免费PDF全文
为了更深入地分析探讨粒子群优化算法的性能,采用两种基本改进策略在MATLAB 7.0中对几个典型测试函数的优化问题进行了实验,即单独采用线性递减惯性权重策略以及在其基础上再加入收缩因子法,给出了这两种策略下函数的在线性能、离线性能变化图。为指导参数选取,用图示方式给出了不同参数组合对收敛性的影响。结论是:采用线性递减惯性权重策略加上收缩因子法比单独采用线性递减惯性权重策略的收敛性能好。若取固定惯性权重w,则w越小,收敛速度越快。  相似文献   

14.
采用离散度作为衡量种群多样性的指标.在粒子群初始化阶段,种群的离散度必须满足一定的要求才能开始迭代;在算法迭代过程中,惯性权重、加速系数的调整都与当前粒子群的离散度相关;当种群的离散度小于一定数值时,进行保优重初始化,适应度函数拉伸操作,重新迭代.由于算法在初始化阶段依据离散度进行了限定,要求粒子尽量平均分布,算法运行...  相似文献   

15.
为解决粒子群算法前期搜索“盲目”,后期搜索速度慢且易陷入局部极值的问题,对算法中粒子更新方式和惯性权重进行了改进,提出了一种基于引导策略的自适应粒子群算法。该算法在种群中引入4种粒子,即主体粒子、双中心粒子、协同粒子和混沌粒子对粒子位置更新进行引导,克服算法的随机性,从而提高搜索效率;为进一步克服粒子群优化算法进化后期易陷入早熟收敛的缺点,引入聚焦距离变化率的概念,通过聚焦距离变化率的大小动态调整惯性权重,以提高算法的收敛速度和精度,两者结合极大地提高了搜索到全局最优解的有效性。对4个标准测试函数进行仿真,实验结果表明IPSO算法在收敛速度、收敛精度以及成功率上都明显优于LDWPSO和WPSO算法。  相似文献   

16.
一种混沌粒子群算法   总被引:1,自引:0,他引:1  
针对传统的粒子群算法易陷入局部最小,且算法后期的粒子速度下降过快而失去搜索能力等缺陷,本文提出了一种基于混沌思想的新型粒子群算法。该算法通过生成混沌序列的方式产生惯性权重取代传统惯性权重线性递减的方案,使粒子速度呈现多样性的特点,从而提高算法的全局搜索能力;根据算法中粒子群体的平均粒子速度调节惯性权重,防止粒子速度过早降低而造成的搜索能力下降的问题;最后通过引入粒子群算法系统模型稳定时惯性权重和加速系数之间的约束关系,增强了粒子群算法的局部搜索能力。对比仿真实验表明,本文所提改进的混沌粒子群算法较传统粒子群算法具有更好的搜索性能。  相似文献   

17.
邬啸 《计算机时代》2010,(10):25-27
针对粒子群算法搜索精度不高,特别是在处理高维复杂问题时极易陷入局部最优的不足,文章提出一种动态扩散并结合交叉因子的改进粒子群优化算法(DMPSO),对惯性权重进行调整,对其取值范围做了进一步的研究,在必要的时候对整个种群的粒子进行重新扩散,并应用于粒子群算法的改进。实验结果表明,新算法的全局搜索能力、收敛速度、精度及稳定性均有了显著提高,而且能更有效地进行全局搜索。  相似文献   

18.
韦攀 《信息与电脑》2023,(2):98-100
文章提出一种粒子分层策略和时变学习因子相结合的改进方法。首先,优于平均适应度的这一层粒子采用一种扰动策略自适应惯性权重,劣于平均适应度的这一层粒子采用线性变化惯性权重。其次,采用正弦时变学习因子,动态调整学习因子。最后,通过4标准函数进行仿真实验测试,证明改进算法的有效性。  相似文献   

19.
惯性权重粒子群算法模型收敛性分析及参数选择   总被引:1,自引:1,他引:1  
为提高粒子群算法的收敛性,基于动力系统的稳定性理论分析了带有惯性权重的粒子群算法模型的收敛性,提出了在算法模型收敛条件下惯性权重w和加速系数c的参数约束关系.使用4个测试函数对具有所提参数约束关系的惯性权重粒子群算法模型和典型参数取值惯性权重粒子群算法模型进行了对比仿真研究,实验结果表明,具有提出的参数约束关系的惯性权重粒子群算法模型在收敛性方面具有显著优越性.  相似文献   

20.
粒子群优化算法(PSO)是一种生物进化技术。依据粒子间的相互影响发现搜索空间中的最优解。通过分析基本PSO算法的进化方程,研究了一种具有更好收敛速度和全局收敛性的改进PSO算法。5个典型测试函数的仿真实验表明该改进算法是行之有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号