首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
India, under its breeding blanket R&D program for DEMO, is focusing on the development of two tritium breeding blanket concepts; namely the lead-lithium-cooled ceramic breeder and the helium-cooled ceramic breeder (HCCB). The study presented in this paper focuses on the neutronic design analysis and optimization from the tritium breeding perspective of the HCCB blanket. The Indian concept has an edge-on configuration and is one of the variants of the helium-cooled solid breeder blanket concepts proposed by several partner countries in ITER. The Indian HCCB blanket having lithium titanate (Li2TiO3) as the tritium breeder and beryllium (Be) as the neutron multiplier with reduced-activation ferritic/martensitic steel structure aims at utilizing the low-energy neutrons at the rear part of the blanket. The aim of the optimization study is to minimize the radial blanket thickness while ensuring tritium self-sufficiency and provide data for further neutronic design and thermal-hydraulic layout of the HCCB blanket. It is found that inboard and outboard blanket thicknesses of 40 cm and 60 cm, respectively, can give a tritium breeding ratio (TBR) >1.3, with 60% 6Li enrichment, which is assumed to be sufficient to cover potential tritium losses and associated uncertainties. The results also demonstrated that the Be packing fraction (PF) has a more profound impact on the TBR as compared to 6Li enrichment and the PF of Li2TiO3.  相似文献   

2.
Using the Monte Carlo transport code MCNP.neutronic calculation analysis for China helium cooled ceramic breeder test blanket module(CN HCCB TBM) and the associated shield block(together called TBM-set) has been carried out based on the latest design of HCCB TBM-set and C-lite model.Key nuclear responses of HCCB TBM-set.such as the neutron flux,tritium production rate,nuclear heating and radiation damage,have been obtained and discussed.These nuclear performance data can be used as the basic input data for other analyses of HCCB TBM-set,such as thermal-hydraulics,thermal-mechanics and safety analysis.  相似文献   

3.
为满足中国聚变工程实验堆(CFETR)包层的应用要求,本文提出氦冷陶瓷增殖(HCCB)包层方案。为验证HCCB包层设计方案的合理性与可行性,采用三维蒙特卡罗粒子输运程序MCNP,计算和分析了HCCB包层方案的氚增殖比、中子壁负载、中子通量密度、核热、辐照损伤等中子学特性。结果表明,HCCB包层方案满足氚自持要求,中子通量密度和核热分布合理,屏蔽性能良好,基本满足设计要求。  相似文献   

4.
在未来核聚变反应堆中,为补充氚的消耗,需要在核聚变堆的包层中进行氚的在线增殖,以维持核聚变反应的持续进行。为验证这一关键技术,在国际热核聚变实验堆(ITER)上开展了ITER TBM计划(实验包层项目)。作为ITER计划成员方之一,中方以中国氦冷固态增殖剂实验包层模块(HCCB TBM)概念参与ITER TBM计划。HCCB TBM现今进入初步设计阶段,而材料的制备技术和性能数据是支撑其结构设计、安全分析和服役工况评估的基础。本文综述和分析了HCCB TBM结构材料低活化铁素体/马氏体钢(RAFM钢)与功能材料氚增殖剂和中子倍增剂的研究现状,并对这些材料下一步的研究方向进行了展望。  相似文献   

5.
Thermal-hydraulic performance is a challenging issue in helium-cooled ceramic breeder (HCCB) blanket design due to the extremely complicated working environment and the strict limits of materials temperature. The heat loads deposited on the HCCB blanket comprises of severe surface heat flux from plasma and the volumetric nuclear heat from neutron irradiation, which can be exhausted by the built-in cooling channels of the components. High pressure helium with 8 MPa, distributed from the coolant manifolds is employed as coolant in the blanket. The design and optimization of the manifolds configuration was performed to guarantee the accurate flow control of helium coolant. The flow distribution in the coolant manifolds was investigated based on the structural improvement of manifolds aiming at overall uniform mass flow rates and better flow streamline distribution without obvious vortexes. The peak temperature of different functional materials in the blanket under normal operating condition is below allowable material limits. It is found that the components in the current blanket module could be cooled effectively under the intense thermal loads due to the updated design and optimization analysis of manifolds.  相似文献   

6.
The Indian Test Blanket Module(TBM) program in ITER is one of the major steps in its fusion reactor program towards DEMO and the future fusion power reactor vision. Research and development(RD) is focused on two types of breeding blanket concepts: lead–lithium ceramic breeder(LLCB) and helium-cooled ceramic breeder(HCCB) blanket systems for the DEMO reactor. As part of the ITER-TBM program, the LLCB concept will be tested in one-half of ITER port no. 2, whose materials and technologies will be tested during ITER operation. The HCCB concept is a variant of the solid breeder blanket, which is presently part of our domestic RD program for DEMO relevant technology development. In the HCCB concept Li_2TiO_3 and beryllium are used as the tritium breeder and neutron multiplier, respectively, in the form of a packed bed having edge-on configuration with reduced activation ferritic martensitic steel as the structural material. In this paper two design schemes, mainly two different orientations of pebble beds, are discussed. In the current concept(case-1), the ceramic breeder beds are kept horizontal in the toroidal–radial direction. Due to gravity, the pebbles may settle down at the bottom and create a finite gap between the pebbles and the top cooling plate, which will affect the heat transfer between them. In the alternate design concept(case-2), the pebble bed is vertically(poloidal–radial) orientated where the side plates act as cooling plates instead of top and bottom plates. These two design variants are analyzed analytically and 2 D thermal-hydraulic simulation studies are carried out with ANSYS, using the heat loads obtained from neutronic calculations.Based on the analysis the performance is compared and details of the thermal and radiative heat transfer studies are also discussed in this paper.  相似文献   

7.
India has proposed the helium-cooled solid breeder blanket concept as a tritium breeding module to be tested in ITER. The module has lithium titanate for tritium breeding and beryllium for neutron multiplication. Beryllium also enhances tritium breeding. A design for the module is prepared for detailed analysis. Neutronic analysis is performed to assess the tritium breeding rate, neutron distribution, and heat distribution in the module. The tritium production distribution in submodules is evaluated to support the tritium transport analysis. The tritium breeding density in the radial direction of the module is also assessed for further optimization of the design. The heat deposition profile of the entire module is generated to support the heat removal circuit design. The estimated neutron spectrum in the radial direction also provides a more in-depth picture of the nuclear interactions inside the material zones. The total tritium produced in the HCSB module is around 13.87 mg per full day of operation of ITER, considering the 400 s ON time and 1400 s dwell time. The estimated nuclear heat load on the entire module is around 474 kW, which will be removed by the high-pressure helium cooling circuit. The heat deposition in the test blanket model (TBM) is huge (around 9 GJ) for an entire day of operation of ITER, which demonstrates the scale of power that can be produced through a fusion reactor blanket. As per the Brayton cycle, it is equivalent to 3.6 GJ of electrical energy. In terms of power production, this would be around 1655 MWh annually. The evaluation is carried out using the MCNP5 Monte Carlo radiation transport code and FEDNL 2.1 nuclear cross section data. The HCSB TBM neutronic performance demonstrates the tritium production capability and high heat deposition.  相似文献   

8.
本文对中国聚变工程实验堆(CFETR)氦冷陶瓷增殖(HCCB)包层进行热工安全分析。采用大型反应堆瞬态分析程序RELAP5对HCCB包层建模,并进行稳态分析和假设事故的模拟。计算结果表明,CFETR HCCB包层在真空室内氦气泄漏和增殖区盒内氦气泄漏事故中均未出现结构材料熔化,同时各部分的压强变化情况均未超出设计阈值,包层系统在事故发生后均能有效快速地排出余热。CFETR HCCB包层的设计满足热工安全方面的要求。  相似文献   

9.
India has developed two concepts of breeding blanket for the DEMO reactor: one is Lead Lithium Ceramic Breeder (LLCB), and the other one is Helium-cooled Ceramic Breeder (HCCB) concept. Indian HCCB concept is having edge on configuration of helium-cooled solid breeder with RAFMS structure. Li2TiO3/Li4SiO4 and beryllium are used as the tritium breeder and neutron multiplier, respectively. 2D thermal–hydraulic simulation studies using ANSYS have been performed based on the heat load obtained from neutronics calculations to confirm heat removal under ITER pulsed operation. Transient thermal analysis has been simulated in ANSYS for the ITER relevant operational conditions. Thermal analysis provides important information about the temperature distribution in different materials used and their temperature–time histories. Result of thermal–hydraulic simulations shows that in each cycle, the maximum temperature of all materials remains same. The peak temperatures of all materials are well within their limiting value. Concept designs of HCCB blanket and its thermal hydraulic analysis will be presented in this paper.  相似文献   

10.
实验包层模块(TBM)是聚变反应堆最重要的组件之一,作用是产氚和能量提取。锂陶瓷具有良好的化学稳定性、热机械性能、产氚性能以及可在更高温度下使用等特点,被认为是聚变堆包层最具吸引力的氚增殖剂材料。中国ITER-TBM设计方案采用了氦冷固态氚增殖剂(HCCB)TBM结构,其聚变环境下的辐照损伤行为可为中国HCCB TBM结构设计提供支持。针对固态氚增殖剂聚变中子辐照损伤问题,利用蒙特卡罗模拟,对比分析了Li_4SiO_4和Li_2TiO_3的中子辐照离位损伤和嬗变气体损伤。结果表明:在相同的服役时间下,Li_4SiO_4比Li_2TiO_3将产生更多的嬗变气体,且在高6 Li丰度情况下,其中子辐照损伤也更严重,会产生更高的损伤剂量和更大的损伤截面。但是,嬗变气体所造成的空位损伤Li_2TiO_3要比Li_4SiO_4严重;对两种陶瓷材料来讲,氦损伤效应均强于氚损伤效应。  相似文献   

11.
Two blanket concepts for deuterium-tritium (DT) fusion reactors are presented which maximize fissile fuel production while at the same time suppress fission reactions. By suppressing fission reactions, the reactor will be less hazardous, and therefore easier to design, develop, and license. A fusion breeder operating a given nuclear power level can produce much more fissile fuel by suppressing fission reactions. The two blankets described use beryllium for neutron multiplication. One blanket uses two separate circulating molten salts: one salt for tritium breeding and the other salt for U-233 breeding. The other uses separate solid forms of lithium and thorium for breeding and helium for cooling.Nuclear power is the sum of fusion (D + T 14 MeV neutron+ 3.5 MeV alpha) power plus additional power from neutron-induced reactions in the blanket.  相似文献   

12.
《Fusion Engineering and Design》2014,89(7-8):1341-1345
This work aims to give an outline of the design requirements of the helium cooled pebble bed (HCPB) blanket and its associated R&D activities. In DEMO fusion reactor the plasma facing components have to fulfill several requirements dictated by safety and process sustainability criteria. In particular the blanket of a fusion reactor shall transfer the heat load coming from the plasma to the cooling system and also provide tritium breeding for the fuel cycle of the machine. KIT has been investigating and developed a helium-cooled blanket for more than three decades: the concept is based on the adoption of separated small lithium orthosilicate (tritium breeder) and beryllium (neutron multiplier) pebble beds, i.e. the HCPB blanket. One of the test blanket modules of ITER will be a HCPB type, aiming to demonstrate the soundness of the concept for the exploitation in future fusion power plants. A discussion is reported also on the development of the design criteria for the blanket to meet the requirements, such as tritium environmental release, also with reference to the TBM.The selection of materials and components to be used in a unique environment as the Tokamak of a fusion reactor requires dedicated several R&D activities. For instance, the performance of the coolant and the tritium self-sufficiency are key elements for the realization of the HCPB concept. Experimental campaigns have been conducted to select the materials to be used inside the solid breeder blanket and R&D activities have been carried out to support the design. The paper discusses also the program of future developments for the realization of the HCPB concept, also focusing to the specific campaigns necessary to qualify the TBM for its implementation in the ITER machine.  相似文献   

13.
Inelastic scattering of high energy fusion neutrons does affect the performance of fusion blanket based on the choice of different materials. It will also affect the behavior of source neutrons in a subcritical fusion fission hybrid blanket and consequently the transmutation and tritium breeding performance. A fusion fission hybrid test blanket module (HTBM) is designed which is presumed to be tested in a large sized tokamak and plasma neutron source is similar to ITER. In this preliminary design of HTBM the neutron source and loss factors are computed for the detailed neutronic performance analysis. The neutronic analysis of hybrid blanket module is performed for five different TRU fuel types: TRU-Zr, TRU-Mo, TRU-Oxide, TRU-Carbide and TRU-Nitride. In this module design, it is aimed to burn and transmute the TRU nuclides from high-level radioactive waste of PWR spent fuel. The effect of TiC reflector on transmutation and tritium breeding performance of HTBM is also quantified. MCNPX is used for neutronic computations. Neutron spectrum, capture to fission ratio and waste transmutation ratio of each fuel type are compared to evaluate their waste transmutation performance. Tritium breeding ratio is also compared for two coolant options: Li and LiPb eutectic.  相似文献   

14.
《Fusion Engineering and Design》2014,89(7-8):1119-1125
ITER will be used to test tritium breeding module concepts, which will lead to the design of DEMO fusion reactor demonstrating tritium self-sufficiency and the extraction of high grade heat for electricity production. China plans to test the HCCB TBM modules during different operation phases. Related design and R&D activities for each TBM module with the auxiliary system are introduced.The helium-cooled ceramic breeder (HCCB) test blanket module (TBM) is the primary option of the Chinese TBM program. The preliminary conceptual design of CN HCCB TBM has been completed. A modified design to reduce the RAFM material mass to 1.3 ton has been carried out based on the ITER technical requirement. Basic characteristics and main design parameters of CN HCCB TBM are introduced briefly. The mock-up fabrication and component tests for Chinese test blanket module are being developed. Recent status of the components of CN HCCB TBM and fabrication technology development are also reported. The neutron multiplier Be pebbles, tritium breeder Li4SiO4 pebbles, and structure material CLF-1 of ton-class are being prepared in laboratory scale. The fabrication of pebble bed container and experiment of tritium breeder pebble bed will be started soon. The fabrication technology development is proceeding as the large-scale mock-up fabrication enters into the R&D stage and demonstration tests toward TBM testing on ITER test port are being done as scheduled.  相似文献   

15.
The Indian test blanket module(TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the RD activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices(ITER relevant and DEMO).The Indian Lead–Lithium Cooled Ceramic Breeder(LLCB) blanket concept is one of the Indian DEMO relevant TBM,to be tested in ITER as a part of the TBM program.Helium-Cooled Ceramic Breeder(HCCB) is an alternative blanket concept that consists of lithium titanate(Li_2TiO_3) as ceramic breeder(CB) material in the form of packed pebble beds and beryllium as the neutron multiplier.Specifically,attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions.These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.  相似文献   

16.
聚变-裂变混合堆(FFHR)作为聚变驱动次临界系统(FDS),具有良好的物理性能,能够实现产能、氚增殖、嬗变核废料等功能。采用COUPLE程序研究了水冷混合堆包层的铀水比和中子倍增剂对中子源效率的影响。结果表明:包层能谱越硬,外中子源效率越高;适当加入中子倍增剂Be可使外中子源效率增加。研究结果对进一步改进聚变-裂变混合堆的概念设计具有一定的指导意义。  相似文献   

17.
氦冷固态增殖剂包层是中国聚变工程实验堆(CFETR)的3种候选包层概念之一。本文基于中国核工业西南物理研究院提出的一种氦冷固态增殖剂包层概念,通过蒙特卡罗输运程序MCNP5建立了包层三维中子学模型,探究了不同几何布置方案及结构设计参数对包层产氚性能的影响,得到了全堆氚增殖比(TBR)及极向各包层模块产氚分布,并由优化后的模型得到了包层模块核热分布。结果表明,优化后的TBR达到1.177,满足氚自持的最低要求。  相似文献   

18.
This study presents the effects of mixture fractions of nuclear fuels (mixture of fissile–fertile fuels and mixture of two different fertile fuels) and 6Li enrichment on the neutronic parameters (the tritium breeding ratio, TBR, the fission rate, FR, the energy multiplication ratio, M, the fissile breeding rate, FBR, the neutron leakage out of blanket, L, and the peak-to-average fission power density ratio, Γ) of a deuterium–tritium (D–T) fusion neutron-driven hybrid blanket. Three different fertile fuels (232Th, 238U and 244Cm), and one fissile fuel (235U) were selected as the nuclear fuel. Two different coolants (pressurized helium and natural lithium) were used for the nuclear heat transfer out of the fuel zone (FZ). The Boltzmann transport equation was solved numerically for obtaining the neutronic parameters with the help of the neutron transport code XSDRNPM/SCALE4.4a. In addition, these calculations were performed by also using the MCNP4B code. The sub-limits of the mixture fractions and 6Li enrichment were determined for the tritium self-sufficiency. The considered hybrid reactor can be operated in a self-sufficiency mode in the cases with the fuel mixtures mixed with a fraction of equal to or greater than these sub-limits. Furthermore, the numerical results show that the fissile fuel breeding and fission potentials of the blankets with the helium coolant are higher than with the lithium coolant.  相似文献   

19.
In a fusion reactor, the prediction of tritium release behavior from breeder blanket is important to design the tritium recovery system, but the amount of tritium generated is necessary information to do that. Hence, tritium generation and recovery studies on lithium ceramics packed bed have been started by using fusion neutron source (FNS) in Japan Atomic Energy Agency (JAEA). Lithium titanate (Li2TiO3) was selected as tritium breeding material, and its packed bed was enclosed by the beryllium blocks, and was kept at certain temperature during fusion neutron irradiation. During irradiation, the packed bed was purged with the sweep gas continuously, and tritium released was trapped in each gas absorber selectively by chemical form. In this work, the effect of sweep gas species on tritium release behavior was investigated. In the case of sweep by helium with 1% of hydrogen, tritium in water form was released sensitively corresponding to the irradiation. This is due to existence of the water vapor in the sweep gas. On the other hand, in the case of sweep by helium without water vapor, tritium in gaseous form was released first, and release of tritium in water form was delayed from gaseous tritium and was gradually increased.  相似文献   

20.
The helium-cooled ceramic breeder (HCCB) test blanket module (TBM) is the primary option of the Chinese TBM program. Current progress on the design and R&D for Chinese helium-cooled ceramic breeder TBM (CN HCCB TBM) in China is presented. The main updated design and related R&D of CN HCCB TBM are introduced briefly. The mock-up fabrication and component tests for Chinese test blanket module are being carried out. Recent status of the components and fabrication technology development is also reported. The neutron multiplier Be pebbles, tritium breeder Li4SiO4 pebbles, and structure material CFL-1 are being prepared in the laboratory scale. The fabrication of 1/3 sized mock-up and construction of a He test loop are being carried out. The key technology development is proceeding to the large scale mock-up fabrication and demonstration tests toward on ITER testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号