首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the effects of the fluid cooling and electric field line deformation were investigatedin a dielectric barrier discharge (DBD) plasma source. The DBD plasma jet is improved bycovering the ground electrode and a power electrode with insulating oil. We obtained positiveresults as insulating oil prevents arc formation, while it improved the supplied power and plasmajet length, and increased radical production. Radical production of this nonthermal plasma jet isstudied with polyvinyl alcohol–potassium iodide liquid.  相似文献   

2.
Nanosecond-pulsed dielectric barrier discharge actuators with powered electrodes of different exposures were investigated numerically by using a newly proposed plasma kinetic model. The governing equations include the coupled continuity plasma discharge equation, drift-diffusion equation, electron energy equation, Poisson's equation, and the Navier–Stokes equations.Powered electrodes of three different exposures were simulated to understand the effect of surface exposure on plasma discharge and surrounding flow field. Our study showed that the fully exposed powered electrode resulted in earlier reduced electric field breakdown and more intensive discharge characteristics than partially exposed and rounded-exposed ones. Our study also showed that the reduced electric field and heat release concentrated near the right upper tip of the powered electrode. The fully exposed electrode also led to stronger shock wave, higher heating temperature, and larger heated area.  相似文献   

3.
Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy(OES)with different discharge powers at the gas–liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary longlived reactive species such as H_2O_2, NO_3~- and O_3 are measured based on plasma treatment time.After 5 min of discharge treatment, the concentration of H_2O_2, NO_3~-, and O_3 increased from 0 mg?·?L~(-1) to 96 mg?·?L~(-1), 19.5 mg?·?L~(-1), and 3.5 mg?·?L~(-1), respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.  相似文献   

4.
We demonstrate a method to generate tunable triangular and honeycomb plasma structures via dielectric barrier discharge with uniquely designed mesh-liquid electrodes. A rapid reconfiguration between the triangular lattice and honeycomb lattice has been realized. Novel structures comprised of triangular plasma elements have been observed and a robust angular reorientation of the triangular plasma elements withis suggested. An active control on the geometrical shape, size and angular orientation of the plasma elements has been achieved. Moreover, the formation mechanism of different plasma structures is studied by spatial-temporal resolved measurements using a high-speed camera. The photonic band diagrams of the plasma structures are calculated by use of finite element method and two large omnidirectional band gaps have been obtained for honeycomb lattices, demonstrating that such plasma structures can be potentially used as plasma photonic crystals to manipulate the propagation of microwaves. The results may offer new strategies for engineering the band gaps and provide enlightenments on designing new types of 2D and possibly 3D metamaterials in other fields.  相似文献   

5.
The dielectric barrier discharge(DBD) in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments. In this paper, the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified. It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap. The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode. The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature, which is beneficial for industrial applications. This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD, which can provide some references for the development and applications of the DBD in the future.  相似文献   

6.
A coaxial dielectric barrier discharge(DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond(ns)pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 ℃ and 64.3 ℃ after 900 s operation, respectively.The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs,reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.  相似文献   

7.
A surface dielectric barrier discharge (SDBD) can discharge at atmospheric pressure and produce a large area of low-temperature plasma. An SDBD plasma reactor based on the double spiral structure is introduced in this paper. To study the discharge mechanism of SDBD, an equivalent circuit model was proposed based on the analysis of the micro-discharge process of SDBD. Matlab/Simulink is used to simulate and compare the voltage–current waves, Lissajous and discharge power with the experimental results. The consistency of the results verifies the validity of the SDBD equivalent circuit model. Maxwell software based on the finite elements method is used to analyze the electrostatic field distribution of the device, which can better explain the relationship between the discharge image and the electrostatic field distribution. The combination of equivalent circuit simulation and electrostatic field simulation can provide better guidance for optimizing a plasma generator. Finally, the device is used to treat PM2.5 and formaldehyde. The test results show that the degradation rate of PM2.5 can reach 78% after 24 min, and formaldehyde is about 31.5% after 10 min of plasma treatment.  相似文献   

8.
With the rapid increase in the number of cars and the development of industry, nitrogen oxide(NO_x)emissions have become a serious and pressing problem. This work reports on the development of a water-cooled dielectric barrier discharge reactor for gaseous NOxremoval at low temperature. The characteristics of the reactor are evaluated with and without packing of the reaction tube with 2 mm diameter dielectric beads composed of glass, ZnO, MnO_2, ZrO_2, or Fe_2O_3. It is found that the use of a water-cooled tube reduces the temperature, which stabilizes the reaction, and provides a much greater NO conversion efficiency(28.8%) than that obtained using quartz tube(14.1%) at a frequency of 8 k Hz with an input voltage of 6.8 k V. Furthermore,under equivalent conditions, packing the reactor tube with glass beads greatly increases the NO conversion efficiency to 95.85%. This is because the dielectric beads alter the distribution of the electric field due to the influence of polarization at the glass bead surfaces, which ultimately enhances the plasma discharge intensity. The presence of the dielectric beads increases the gas residence time within the reactor. Experimental verification and a theoretical basis are provided for the industrial application of the proposed plasma NO removal process employing dielectric bead packing.  相似文献   

9.
The influences of frequency on nitrogen fixation of dielectric barrier discharge in air were studied by electrical diagnostics, gas detection and infrared detection methods. The system power, nitrogen oxide concentration, voltage–current waveform, dielectric surface temperature distribution and filamentous discharge pictures were measured, and then the energy yield was calculated; paper studied their changing tendencies in the presence of frequency. Results show that frequency has strong influences on nitrogen fixation. When the parameters of reaction chamber and amplitude of applied voltage is fixed, with the increasing of frequency, the system power increases; in 5-10 kHz, nitrogen oxide gas concentration up to 1113.7 mg m~(-3), and 7 k Hz is the optimal nitrogen fixation frequency whose energy yield is 20.5 mg(m~3 W)~(-1).  相似文献   

10.
Quinoline is widely used in the production of drugs as a highly effective insecticide, and its derivatives can also be used to produce dyes. It has a teratogenic carcinogen to wildlife and humans once entering into the aquatic environment. In this study, the degradation mechanism of quinoline in drinking water by a strong ionization dielectric barrier discharge(DBD) lowtemperature plasma with large volume was explored. High concentration of hydroxyl radical(·OH)(0.74 mmol l-1) and ozone(O3)(58.2 mg l-1) produced by strongly ionized discharge DBD system were quantitatively analyzed based on the results of electron spin resonance and O3 measurements. The influencing reaction conditions of input voltages, initial p H value, ·OH inhibitors, initial concentration and inorganic ions on the removal efficiency of quinoline were systematically studied. The obtained results showed that the removal efficiency and TOC removal of quinoline achieved 94.8% and 32.2%, degradation kinetic constant was 0.050 min-1 at 3.8 k V and in a neutral p H(7.2). The proposed pathways of quinoline were suggested based on identified intermediates as hydroxy pyridine, fumaric acid, oxalic acid, and other small molecular acids by high-performance liquid chromatography/tandem mass spectrometry analysis. Moreover, the toxicity analysis on the intermediates demonstrated that its acute toxicity, bioaccumulation factor and mutagenicity were reduced. The overall findings provided theoretical and experimental basis for the application of a high capacity strong ionization DBD water treatment system in the removal of quinoline from drinking water.  相似文献   

11.
The effects of nitrogen on ozone synthesis are studied in a coaxial cylinder generator with dielectric barrier discharge (DBD) and pack-bed dielectric barrier discharge (PB-DBD). A series of 10 h discharge experiments are conducted adopting a bare stainless electrode and bare copper electrode. Results show that the material of the electrode can affect the ozone synthesis. It is inferred that the ozone zero phenomenon (OZP) may be induced from ozone decomposing by metallic oxide catalysis. Packing dielectric particles can reduce the OZP. Adding a certain amount of nitrogen into the oxygen feed gas can further eliminate the OZP, and increase the ozone concentration significantly, but decreases the maximum energy efficiency of ozone generators. Initial analysis indicates that the optimal proportion of nitrogen addition is inversely related to the average reduced electric field strength in the discharge region.  相似文献   

12.
This paper discusses the conversion of nitric oxide (NO) with a low-temperature plasma induced by a catalytic packed-bed dielectric barrier discharge (DBD) reactor.Alumina oxide (Al2O3),glass (SiO2) and zirconium oxide (ZrO2),three different spherical packed materials of the same size,were each present in the DBD reactor.The NO conversion under varying input voltage and specific energy density,and the effects of catalysts (titanium dioxide (TiO2) and manganese oxide (MnOx) coated on Al2O3) on NO conversion were investigated.The experimental results showed that NO conversion was greatly enhanced in the presence of packed materials in the reactor,and the catalytic packed bed of MnOx/Al2O3 showed better performance than that of TiO2/Al2O3.The surface and crystal structures of the materials and catalysts were characterized through scanning electron microscopy analysis.The final products were clearly observed by a Fourier transform infrared spectrometer and provided a better understanding of NO conversion.  相似文献   

13.
Ozone production utilizing surface dielectric barrier discharge (SDBD) was experimental studied for different flow patterns considering the influences of transversal flow, lateral flow and different lateral flow positions. Results show that the flow patterns have a remarkable impact on the ozone yield by affecting the uniformity and turbulence of gas flow. Meanwhile, distributing the O2 flow rate according to the intensity of the plasma reaction would also increase the generation efficiency of SDBD for ozone production. By improving the uniformity and introducing the lateral flow to the transversal flow, the highest ozone yield was obtained in flow pattern ‘F’. In this case, the ozone yield increased by 28.4% to 131 gkWh −1 from 102.8 gkWh−1 in flow pattern ‘A’.  相似文献   

14.
In this paper, a two-dimensional axisymmetric fluid model was established to investigate the influence of nitrogen impurity content on the discharge pattern and the relevant discharge characteristics in an atmosphere pressure helium dielectric barrier discharge (DBD). The results indicated that when the nitrogen content was increased from 1 to 100 ppm, the discharge pattern evolved from a concentric-ring pattern into a uniform pattern, and then returned to the concentricring pattern. In this process, the discharge mode at the current peak moment transformed from glow mode into Townsend mode, and then returned to glow mode. Further analyses revealed that with the increase of impurity level, the rate of Penning ionization at the pre-ionization stage increased at first and decreased afterwards, resulting in a similar evolution pattern of seed electron level. This evolution trend was believed to be resulted from the competition between the N2 partial pressure and the consumption rate of metastable species. Moreover, the discharge uniformity was found positively correlated with the spatial uniformity of seed electron density as well as the seed electron level. The reason for this correlation was explained by the reduction of radial electric field strength and the promotion of seed electron uniformity as pre-ionization level increases. The results obtained in this work may help better understand the pattern formation mechanism of atmospheric helium DBD under the variation of N2 impurity level, thereby providing a possible means of regulating the discharge performance in practical application scenarios.  相似文献   

15.
In this article, plasma-assisted NH3 synthesis directly from N2 and H2 over packing materials with different dielectric constants (BaTiO3, TiO2 and SiO2) and thermal conductivities (BeO, AlN and Al2O3) at room temperature and atmospheric pressure is reported. The higher dielectric constant and thermal conductivity of packing material are found to be the key parameters in enhancing the NH3 synthesis performance. The NH3 concentration of 1344 ppm is achieved in the presence of BaTiO3, which is 106% higher than that of SiO2, at the specific input energy (SIE) of 5.4 kJ·l−1. The presence of materials with higher dielectric constant, i.e. BaTiO3 and TiO2 in this work, would contribute to the increase of electron energy and energy injected to plasma, which is conductive to the generation of chemically active species by electron-impact reactions. Therefore, the employment of packing materials with higher dielectric constant has proved to be beneficial for NH3 synthesis. Compared to that of Al2O3, the presence of BeO and AlN yields 31.0% and 16.9% improvement in NH3 concentration, respectively, at the SIE of 5.4 kJ·l−1. The results of IR imaging show that the addition of BeO decreases the surface temperature of the packed region by 20.5% to 70.3°C and results in an extension of entropy increment compared to that of Al2O3, at the SIE of 5.4 kJ·l−1. The results indicate that the presence of materials with higher thermal conductivity is beneficial for NH3 synthesis, which has been confirmed by the lower surface temperature and higher entropy increment of the packed region. In addition, when SIE is higher than the optimal value, further increasing SIE would lead to the decrease of energy efficiency, which would be related to the exacerbation in reverse reaction of NH3 formation reactions.  相似文献   

16.
In this study, we computationally examined the dynamics of dielectric barrier discharge in hydrogen sulfide. The simulations were performed with a 1d3v particle-in-cell/Monte Carlo collision model in which a parallel-plate electrode geometry with dielectrics was used. Particle recombination process is represented in the model. The discharge mode was found to be initially Townsend discharge developing from the cathode to the anode, and at the peak of the current, a more stable glow discharge develops from the anode to the cathode. A higher applied voltage results in sufficient secondary electrons to trigger a second current peak, and then the current amplitude increases. As the frequency is increased, it leads to the advance of the phase and an increase in the amplitude of the current peak. A higher dielectric permittivity also makes the discharge occur earlier and more violently in the gap.  相似文献   

17.
In this work, a single Al2O3 particle packed dielectric barrier discharge (DBD) reactor with adjustable discharge gap is built, and the influences of the particle shape (ball and column) and the residual gap between the top electrode and particle on the electrical and optical characteristics of plasma are studied. Our research confirms that streamer discharge and surface discharge are the two main discharge patterns in the single-particle packed DBD reactor. The strong electric field distortion at the top of the ball or column caused by the dielectric polarization effect is an important reason for the formation of streamer discharge. The length of streamer discharge is proportional to the size of the residual gap, but the number of discharge times of a single voltage cycle shows an opposite trend. Compared to the column, a smooth spherical surface is more conducive to the formation of large and uniform surface discharges. The surface discharge area and the discharge intensity reach a maximum when the gap is equal to the diameter of the ball. All in all, the results of this study will provide important theoretical support for the establishment of the synergistic characteristics of discharge and catalysis in plasma catalysis.  相似文献   

18.
Matching optimization of resonant parameters among the high power inverters, low power transformers and plasma reactors have significant effects on the performance and output of the reactor array when applying the partitioned operation method. In this paper, the Matlab/ Simulink electrical model was established based on the method of partitioned operation. The matching relation between resonant parameters is analyzed on the basis of experimental result. As a consequence, transformer leakage inductance and working frequency are the important parameters influencing the operational efficiency of system, leakage inductance of transformer should be adjusted based on the equivalent capacitance of plasma reactor to realize the matching optimization of resonant parameters.  相似文献   

19.
In this work, a portable floating-electrode dielectric barrier discharge(FE-DBD) device is designed with a rechargeable battery as the power supply. The characteristics of the FE-DBD with a metal electrode and human hand are studied and compared. The human contact safety is verified by calculating the current through the human body based on the equivalent circuit model. Escherichia coli inactivation experiments confirm the efficacy of the FE-DBD device in the envisaged applications.  相似文献   

20.
A honeycomb-Kagome hexagonal superlattice pattern with dark discharges is observed in a dielectric barrier discharge system for the first time. The spatiotemporal structure of the honeycomb-Kagome hexagonal superlattice pattern with dark discharges is investigated by an intensified charge-coupled device and the photomultipliers show that it is an interleaving of three different sub-lattices, which are bright-spot, invisible honeycomb lattice, and Kagome lattice with invisible frameworks and dim-spots, respectively. The invisible honeycomb lattices and Kagome lattices are actually composed of dark discharges. By using the optical emission spectra method, it is found that the plasma parameters of the three different sub-lattices are different. The influence of the dark discharges on pattern formation is discussed. The results may have significance for the investigation of the dark discharges and will accelerate the development of self-organized pattern dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号