首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 microg m(-3) were significantly higher than outdoor PM2.5 standard of 65 microg m(-3) recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R(2) of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R(2) of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic and combustion processes.  相似文献   

2.
To evaluate the separate impacts on human health and establish effective control strategies, it is crucial to estimate the contribution of outdoor infiltration and indoor emission to indoor PM2.5 in buildings. This study used an algorithm to automatically estimate the long-term time-resolved indoor PM2.5 of outdoor and indoor origin in real apartments with natural ventilation. The inputs for the algorithm were only the time-resolved indoor/outdoor PM2.5 concentrations and occupants’ window actions, which were easily obtained from the low-cost sensors. This study first applied the algorithm in an apartment in Tianjin, China. The indoor/outdoor contribution to the gross indoor exposure and time-resolved infiltration factor were automatically estimated using the algorithm. The influence of outdoor PM2.5 data source and algorithm parameters on the estimated results was analyzed. The algorithm was then applied in four other apartments located in Chongqing, Shenyang, Xi'an, and Urumqi to further demonstrate its feasibility. The results provided indirect evidence, such as the plausible explanations for seasonal and spatial variation, to partially support the success of the algorithm used in real apartments. Through the analysis, this study also identified several further development directions to facilitate the practical applications of the algorithm, such as robust long-term outdoor PM2.5 monitoring using low-cost light-scattering sensors.  相似文献   

3.
Analysis of indoor PM2.5 exposure in Asian countries using time use survey   总被引:1,自引:0,他引:1  
Most household fuels used in Asian countries are solid fuels such as coal and biomass (firewood, crop residue and animal dung). The particulate matter (PM), CO, NOx and SOx produced through the combustion of these fuels inside the residence for cooking and heating has an adverse impact on people's health. PM 2.5 in particular, consisting of particles with an aerodynamic diameter of 2.5 μm or less, penetrates deep into the lungs and causes respiratory system and circulatory system diseases and so on. As a result, the World Health Organization (WHO) established guideline values for this type of particulate matter in 2005. In this study, the authors focused on PM 2.5 and estimated indoor exposure concentrations for PM 2.5 in 15 Asian countries. For each environment used for cooking, eating, heating and illumination in which people are present temporarily (microenvironment), exposure concentrations were estimated for individual cohorts categorized according to sex, age and occupation status. To establish the residence time in each microenvironment for each of the cohorts, data from time use surveys conducted in individual countries were used. China had the highest estimate for average exposure concentration in microenvironment used for cooking at 427.5 μg/m3 , followed by Nepal, Laos and India at 285.2 μg/m3, 266.3 μg/m3 and 205.7 μg/m3 , respectively. The study found that, in each country, the PM2.5 exposure concentration was highest for children and unemployed women between the ages of 35 and 64. The study also found that the exposure concentration for individual cohorts in each country was greatly affected by people's use of time indoors. Because differences in individual daily life activities were reflected in the use of time and linked to an assessment of exposure to indoor air-polluting substances, the study enabled detailed assessment of the impact of exposure.  相似文献   

4.
The study is a part of an ongoing prospective cohort study on the relationship between the exposure to environmental factors during pregnancy and birth outcomes and health of newborns. We have measured personal PM(2.5) level in the group of 407 non-smoking pregnant women during the 2nd trimester of pregnancy. On average, the participants from the city center were exposed to higher exposure than those from the outer city area (GM=42.0 microg/m(3), 95% CI: 36.8-48.0 vs. 35.8 microg/m(3), 95% CI: 33.5-38.2 microg/m(3)). More than 20% of study subjects were affected by high level of PM(2.5) pollution (above 65 microg/m(3)). PM(2.5) concentrations were higher during the heating season (GM=43.4 microg/m(3), 95% CI: 40.1-46.9 microg/m(3)) compared to non-heating season (GM=29.8 microg/m(3), 95% CI: 27.5-32.2 microg/m(3)). Out of all potential outdoor air pollution sources (high traffic density, bus depot, waste incinerator, industry etc.) considered in the bivariate analysis, only the proximity of industrial plant showed significant impact on the personal exposure (GM=54.3 microg/m(3), 95% CI: 39.4-74.8 microg/m(3)) compared with corresponding figure for those who did not declare living near the industrial premises (GM=36.2 microg/m(3), 95% CI: 34.1-38.4 microg/m(3)). The subjects declaring high exposure to ETS (>10 cigarettes daily) have shown very high level of personal exposure (GM=88.8 microg/m(3), 95% CI: 73.9-106.7 microg/m(3)) compared with lower ETS exposure (< or =10 cigarettes) (GM=46.3 microg/m(3), 95% CI: 40.0-53.5 microg/m(3)) and no-ETS exposure group (GM=33.9 microg/m(3), 95% CI: 31.8-36.1 microg/m(3)). The contribution of the background ambient PM(10) level was very strong determinant of the total personal exposure to PM(2.5) and it explained about 31% of variance between the subjects followed by environmental tobacco smoke (10%), home heating by coal/wood stoves (2%), other types of heating (2%) and the industrial plant localization in the proximity of household (1%).  相似文献   

5.
Source contributions to urban fine particulate matter (PM(2.5) ) have been modelled using land use regression (LUR) and factor analysis (FA). However, people spend more time indoors, where these methods are less explored. We collected 3-4- day samples of nitrogen dioxide and PM(2.5) inside and outside of 43 homes in summer and winter, 2003-2005, in and around Boston, Massachusetts. Particle filters were analysed for black carbon and trace element concentrations using reflectometry, X-ray fluorescence (XRF), and high-resolution inductively coupled mass spectrometry (ICP-MS). We regressed indoor against outdoor concentrations modified by ventilation, isolating the indoor-attributable fraction, and then applied constrained FA to identify source factors in indoor concentrations and residuals. Finally, we developed LUR predictive models using GIS-based outdoor source indicators and questionnaire data on indoor sources. FA using concentrations and residuals reasonably separated outdoor (long-range transport/meteorology, fuel oil/diesel, road dust) from indoor sources (combustion, smoking, cleaning). Multivariate LUR regression models for factors from concentrations and indoor residuals showed limited predictive power, but corroborated some indoor and outdoor factor interpretations. Our approach to validating source interpretations using LUR methods provides direction for studies characterizing indoor and outdoor source contributions to indoor cocentrations. PRACTICAL IMPLICATIONS: By merging indoor-outdoor modeling, factor analysis, and LUR-style predictive regression modeling, we have added to previous source apportionment studies by attempting to corroborate factor interpretations. Our methods and results support the possibility that indoor exposures may be modeled for epidemiologic studies, provided adequate sample size and variability to identify indoor and outdoor source contributions. Using these techniques, epidemiologic studies can more clearly examine exposures to indoor sources and indoor penetration of source-specific components, reduce exposure misclassification, and improve the characterization of the relationship between particle constituents and health effects.  相似文献   

6.
Residents of low-income multifamily housing can have elevated exposures to multiple environmental pollutants known to influence asthma. Simulation models can characterize the health implications of changing indoor concentrations, but quantifying the influence of interventions on concentrations is challenging given complex airflow and source characteristics. In this study, we simulated concentrations in a prototype multifamily building using CONTAM, a multizone airflow and contaminant transport program. Contaminants modeled included PM(2.5) and NO(2) , and parameters included stove use, presence and operability of exhaust fans, smoking, unit level, and building leakiness. We developed regression models to explain variability in CONTAM outputs for individual sources, in a manner that could be utilized in simulation modeling of health outcomes. To evaluate our models, we generated a database of 1000 simulated households with characteristics consistent with Boston public housing developments and residents and compared the predicted levels of NO(2) and PM(2.5) and their correlates with the literature. Our analyses demonstrated that CONTAM outputs could be readily explained by available parameters (R(2) between 0.89 and 0.98 across models), but that one-compartment box models would mischaracterize concentrations and source contributions. Our study quantifies the key drivers for indoor concentrations in multifamily housing and helps to identify opportunities for interventions. PRACTICAL IMPLICATIONS: Many low-income urban asthmatics live in multifamily housing that may be amenable to ventilation-related interventions such as weatherization or air sealing, wall and ceiling hole repairs, and exhaust fan installation or repair, but such interventions must be designed carefully given their cost and their offsetting effects on energy savings as well as indoor and outdoor pollutants. We developed models to take into account the complex behavior of airflow patterns in multifamily buildings, which can be used to identify and evaluate environmental and non-environmental interventions targeting indoor air pollutants which can trigger asthma exacerbations.  相似文献   

7.
室外PM2.5可通过新风及围护结构缝隙渗透至室内,室外PM2.5较高时尤为明显,结果导致室内空气中的PM2.5浓度上升。为了研究空调形式对室内外PM2.5浓度相关性的影响,在2015年夏季对重庆某办公建筑中采用不同空调形式的室内外PM2.5浓度进行了实测。实测结果发现:集中式空调、分体式空调和非空调房间室内外PM2.5浓度比变化范围分别为0.59~0.76、0.47~0.76、0.71~0.91。室内外PM2.5浓度相关性系数的排序为:集中式空调环境(0.94)非空调环境(0.92)分体式空调环境(0.77),研究结果表明,办公建筑的空调形式,对室内外PM2.5浓度的相关性有影响。  相似文献   

8.
9.
Y. Yoda  K. Tamura  M. Shima 《Indoor air》2017,27(5):955-964
Endotoxins are an important biological component of particulate matter and have been associated with adverse effects on human health. There have been some recent studies on airborne endotoxin concentrations. We collected fine (PM2.5) and coarse (PM10‐2.5) particulate matter twice on weekdays and weekends each for 48 hour, inside and outside 55 homes in an urban city in Japan. Endotoxin concentrations in both fractions were measured using the kinetic Limulus Amebocyte Lysate assay. The relationships between endotoxin concentrations and household characteristics were evaluated for each fraction. Both indoor and outdoor endotoxin concentrations were higher in PM2.5 than in PM10‐2.5. In both PM2.5 and PM10‐2.5, indoor endotoxin concentrations were higher than outdoor concentrations, and the indoor endotoxin concentrations significantly correlated with outdoor concentrations in each fraction (R2=0.458 and 0.198, respectively). Indoor endotoxin concentrations in PM2.5 were significantly higher in homes with tatami or carpet flooring and in homes with pets, and lower in homes that used air purifiers. Indoor endotoxin concentrations in PM10‐2.5 were significantly higher in homes with two or more children and homes with tatami or carpet flooring. These results showed that the indoor endotoxin concentrations were associated with the household characteristics in addition to outdoor endotoxin concentrations.  相似文献   

10.
The concentrations of lead, copper, nickel, zinc and chromium in outdoor and indoor dusts collected from different sites in Muscat, Oman, were determined by flame atomic absorption. Results showed a wide range of concentrations, the means in the outdoor dust being, 65?±?50, 124?±?316, 47?±?45, 930?±?666 and 64?±?26 mg kg??1 for lead, zinc, copper, nickel and chromium, respectively. The 2001 Omani phasing out of leaded fuel resulted in low levels of lead in outdoor dust compared to those reported in the literature. Outstanding was the high nickel concentration in outdoor dust when compared to that in the literature, the reason being natural soil pollution due to the local geology of the northern parts of Oman. The concentrations of chromium, copper and zinc are lower than or comparable to these in other cities around the world. The results also showed that the industrial activities in Muscat do not contribute significantly to metal pollution in street dusts.

On the other hand, the mean concentrations of lead, zinc, copper, nickel and chromium in indoor dust were 108?±?65, 753?±?1162, 108?±?91, 130?±?125 and 34?±?14 mg kg??1, respectively. In general, zinc and nickel levels are higher than those reported in the literature while lead, copper and chromium levels are lower or comparable.

When outdoor and indoor dusts were correlated, the ratios between indoor–outdoor mean concentrations revealed that lead, zinc, and copper were generated internally, while nickel and chromium were from external sources.  相似文献   

11.
通过对上海市某办公建筑在不同时段和条件下PM2.5等颗粒物浓度的现场测试,得到室内PM2.5浓度分布及变化特性,并分析了影响PM2.5浓度变化的室外颗粒物浓度、门窗开启情况、测试时段、室内人员、吸烟、空调系统、地毯扬尘等因素,探讨了PM2.5与其他粒径颗粒物浓度变化的相关性。实测发现办公楼室内PM2.5浓度在不同时期的变化较大,为了室内工作人员的身体健康,建议在颗粒物污染较严重时期,尽量少开门窗,加强新风过滤处理,在室内发尘较严重的区域,建议同时使用局部净化设备。  相似文献   

12.
The daily concentration and chemical composition of PM2.5 was determined in indoor and outdoor 24‐h samples simultaneously collected for a total of 5 weeks during a winter and a summer period in an apartment sited in Rome, Italy. The use of a specifically developed very quiet sampler (<35 dB) allowed the execution of the study while the family living in the apartment led its normal life. The indoor concentration of PM2.5 showed a small seasonal variation, while outdoor values were much higher during the winter study. Outdoor sources were found to contribute significantly to indoor PM concentration especially during the summer, when the apartment was naturally ventilated by opening the windows. During the winter the infiltration of outdoor PM components was lower and mostly regulated by the particle dimensions. Organics displayed In/Out ratios higher than unity during both periods; their indoor production increased significantly during the weekends, where the family stayed mostly at home. PM components were grouped into macrosources (soil, sea, secondary inorganics, traffic, organics). During the summer the main contributions to outdoor PM2.5 came from soil (30%), secondary inorganics (29%) and organics (22%). Organics dominated both indoor PM2.5 during the summer (60%) and outdoor and indoor PM2.5 during the winter (51% and 66%, respectively).  相似文献   

13.
Indoor and outdoor concentrations of PM2.5 were measured for 24 h during heating and non-heating seasons in a rural solid fuel burning Native American community. Household building characteristics were collected during the initial home sampling visit using technician walkthrough questionnaires, and behavioral factors were collected through questionnaires by interviewers. To identify seasonal behavioral factors and household characteristics associated with indoor PM2.5, data were analyzed separately by heating and non-heating seasons using multivariable regression. Concentrations of PM2.5 were significantly higher during the heating season (indoor: 36.2 μg/m3; outdoor: 22.1 μg/m3) compared with the non-heating season (indoor: 14.6 μg/m3; outdoor: 9.3 μg/m3). Heating season indoor PM2.5 was strongly associated with heating fuel type, housing type, indoor pests, use of a climate control unit, number of interior doors, and indoor relative humidity. During the non-heating season, different behavioral and household characteristics were associated with indoor PM2.5 concentrations (indoor smoking and/or burning incense, opening doors and windows, area of surrounding environment, building size and height, and outdoor PM2.5). Homes heated with coal and/or wood, or a combination of coal and/or wood with electricity and/or natural gas had elevated indoor PM2.5 concentrations that exceeded both the EPA ambient standard (35 μg/m3) and the WHO guideline (25 μg/m3).  相似文献   

14.
15.
Portable air cleaners are increasingly used in polluted areas in an attempt to reduce human exposure; however, there has been limited work characterizing their effectiveness at reducing exposure. With this in mind, we recruited forty-three children with asthma from suburban Shanghai and deployed air cleaners (with HEPA and activated carbon filters) in their bedrooms. During both 2-week filtration and non-filtration periods, low-cost PM2.5 and O3 air monitors were used to measure pollutants indoors, outdoors, and for personal exposure. Indoor PM2.5 concentrations were reduced substantially with the use of air cleaners, from 34 ± 17 to 10 ± 8 µg/m3, with roughly 80% of indoor PM2.5 estimated to come from outdoor sources. Personal exposure to PM2.5 was reduced from 40 ± 17 to 25 ± 14 µg/m3. The more modest reductions in personal exposure and high contribution of outdoor PM2.5 to indoor concentrations highlight the need to reduce outdoor PM2.5 and/or to clean indoor air in multiple locations. Indoor O3 concentrations were generally low (mean = 8±4 ppb), and no significant difference was seen by filtration status. The concentrations of pollutants and the air cleaner effectiveness were highly variable over time and across homes, highlighting the usefulness of real-time air monitors for understanding individual exposure reduction strategies.  相似文献   

16.
We conducted a randomized trial of portable HEPA air cleaners with pre-filters designed to also reduce NH3 in non-smoking homes of children age 6-12 with asthma in Yakima Valley (Washington, USA). Participants were recruited through the Yakima Valley Farm Workers Clinic asthma education program. All participants received education on home triggers while intervention families additionally received two HEPA cleaners (child's sleeping area, main living area). Fourteen-day integrated samples of PM2.5 and NH3 were measured at baseline and one-year follow-up. We fit ANCOVA models to compare follow-up concentrations in HEPA vs control homes, adjusting for baseline concentrations. Seventy-one households (36 HEPA, 35 control) completed the study. Most were single-family homes, with electric heat and stove, A/C, dogs/cats, and mean (SD) 5.3 (1.8) occupants. In the sleeping area, baseline geometric mean (GSD) PM2.5 was 10.7 (2.3) μg/m3 (HEPA) vs 11.2 (1.9) μg/m3 (control); in the living area, it was 12.5 (2.3) μg/m3 (HEPA) vs 13.6 (1.9) μg/m3 (control). Baseline sleeping area NH3 was 62.4 (1.6) μg/m3 (HEPA) vs 65.2 (1.8) μg/m3 (control). At follow-up, HEPA families had 60% (95% CI, 41%-72%; p < .0001) and 42% (19%-58%; p = .002) lower sleeping and living area PM2.5, respectively, consistent with prior studies. NH3 reductions were not observed.  相似文献   

17.
Cao JJ  Lee SC  Chow JC  Cheng Y  Ho KF  Fung K  Liu SX  Watson JG 《Indoor air》2005,15(3):197-204
Six residences were selected (two roadside, two urban, and two rural) to evaluate the indoor-outdoor characteristics of PM(2.5) (aerodynamic diameter <2.5 microm) carbonaceous species in Hong Kong during March and April 2004. Twenty-minute-averaged indoor and outdoor PM(2.5) concentrations were recorded by DustTrak samplers simultaneously at each site for 3 days to examine diurnal variability of PM(2.5) mass concentrations and their indoor-to-outdoor (I/O) ratios. Daily (24-h average) indoor/outdoor PM(2.5) samples were collected on pre-fired quartz-fiber filters with battery-powered portable mini-volume samplers and analyzed for organic and elemental carbon (OC, EC) by thermal/optical reflectance (TOR) following the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol. The average indoor and outdoor concentrations of 24 h PM(2.5) were 56.7 and 43.8 microg/m(3), respectively. The short-term PM(2.5) profiles indicated that the penetration of outdoor particles was an important contributor to indoor PM(2.5), and a household survey indicated that daily activities were also sources of episodic peaks in indoor PM(2.5). The average indoor OC and EC concentrations of 17.1 and 2.8 microg/m(3), respectively, accounted for an average of 29.5 and 5.2%, respectively, of indoor PM(2.5) mass. The average indoor OC/EC ratios were 5.8, 9.1, and 5.0 in roadside, urban, and rural areas, respectively; while average outdoor OC/EC ratios were 4.0, 4.3, and 4.0, respectively. The average I/O ratios of 24 h PM(2.5), OC, and EC were 1.4, 1.8, and 1.2, respectively. High indoor-outdoor correlations (r(2)) were found for PM(2.5) EC (0.96) and mass (0.81), and low correlations were found for OC (0.55), indicative of different organic carbon sources indoors. A simple model implied that about two-thirds of carbonaceous particles in indoor air are originated from outdoor sources. PRACTICAL IMPLICATIONS: Indoor particulate pollution has received more attentions in Asia. This study presents a case study regarding the fine particulate matter and its carbonaceous compositions at six residential homes in Hong Kong. The characteristics and relationship of atmospheric organic and elemental carbon were discussed indoors and outdoors. The distribution of eight carbon fractions was first reported in indoor samples to interpret potential sources of indoor carbonaceous particles. The data set can provide significant scientific basis for indoor air quality and epidemiology study in Hong Kong and China.  相似文献   

18.
Indoor fine particles (FPs) are a combination of ambient particles that have infiltrated indoors, and particles that have been generated indoors from activities such as cooking. The objective of this paper was to estimate the infiltration factor (Finf) and the ambient/non‐ambient components of indoor FPs. To do this, continuous measurements were collected indoors and outdoors for seven consecutive days in 50 non‐smoking homes in Halifax, Nova Scotia in both summer and winter using DustTrak (TSI Inc) photometers. Additionally, indoor and outdoor gravimetric measurements were made for each 24‐h period in each home, using Harvard impactors (HI). A computerized algorithm was developed to remove (censor) peaks due to indoor sources. The censored indoor/outdoor ratio was then used to estimate daily Finfs and to determine the ambient and non‐ambient components of total indoor concentrations. Finf estimates in Halifax (daily summer median = 0.80; daily winter median = 0.55) were higher than have been reported in other parts of Canada. In both winter and summer, the majority of FP was of ambient origin (daily winter median = 59%; daily summer median = 84%). Predictors of the non‐ambient component included various cooking variables, combustion sources, relative humidity, and factors influencing ventilation. This work highlights the fact that regional factors can influence the contribution of ambient particles to indoor residential concentrations.  相似文献   

19.
20.
Abstract Quasi‐ultrafine (quasi‐UF) particulate matter (PM0.25) and its components were measured in indoor and outdoor environments at four retirement communities in Los Angeles Basin, California, as part of the Cardiovascular Health and Air Pollution Study (CHAPS). The present paper focuses on the characterization of the sources, organic constituents and indoor and outdoor relationships of quasi‐UF PM. The average indoor/outdoor ratios of most of the measured polycyclic aromatic hydrocarbons (PAHs), hopanes, and steranes were close to or slightly lower than 1, and the corresponding indoor–outdoor correlation coefficients (R) were always positive and, for the most part, moderately strong (median R was 0.60 for PAHs and 0.74 for hopanes and steranes). This may reflect the possible impact of outdoor sources on indoor PAHs, hopanes, and steranes. Conversely, indoor n‐alkanes and n‐alkanoic acids were likely to be influenced by indoor sources. A chemical mass balance model was applied to both indoor and outdoor speciated chemical measurements of quasi‐UF PM. Among all apportioned sources of both indoor and outdoor particles, vehicular emissions was the one contributing the most to the PM0.25 mass concentration measured at all sites (24–47% on average).

Practical Implications

Although people (particularly the elderly retirees of our study) generally spend most of their time indoors, a major portion of the PM0.25 particles they are exposed to comes from outdoor mobile sources. This is important because, an earlier investigation, also conducted within the Cardiovascular Health and Air Pollution Study (CHAPS), showed that indoor‐infiltrated particles from mobile sources are more strongly correlated with adverse health effects observed in the elderly subjects living in the studied retirement communities compared with other particles found indoors ( Delfino et al., 2008 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号