首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将凝胶注模工艺应用于金属Ti及Ti-6Al-4V合金粉末的坯体成形,研究了高固相含量的Ti粉和Ti-6Al-4V合金粉末的料浆的制备.结果表明,用凝胶注模工艺制备出了固相含量为54ψ%的钛合金粉末料浆和形状复杂的坯体;粉末的颗粒形状是影响料浆固相含量的重要因素,球形粉末配制成的浆料固相含量最高,近球形次之,片状最低;分散剂柠檬酸铵也可以显著提高浆料的固相含量.  相似文献   

2.
Effect of mean stress on fretting fatigue of Ti-6Al-4V on Ti-6Al-4V   总被引:1,自引:0,他引:1  
Fretting fatigue tests of Ti‐6Al‐4V on Ti‐6Al‐4V have been conducted to determine the influence of stress amplitude and mean stress on life. The stress ratio was varied from R=−1 to 0.8. Both flat and cylindrical contacts were studied using a bridge‐type fretting fatigue test apparatus operating either in the partial slip or mixed fretting regimes. The fretting fatigue lives were correlated to a Walker equivalent stress relation. The influence of mean stress on fretting fatigue crack initiation, characterized by the value of the Walker exponent, is smaller compared with plain fatigue. The fretting fatigue knockdown factor based on the Walker equivalent stress is 4. Formation of fretting cracks is primarily associated with the tangential force amplitude at the contact interface. A simple fretting fatigue crack initiation metric that is based on the strength of the singular stress field at the edge of contact is evaluated. The metric has the advantage in that it is neither dependent on the coefficient of friction nor the location of the stick/slip boundary, both of which are often difficult to define with certainty a priori.  相似文献   

3.
Hardening of Ti-6Al-4V alloy with laser surface melting (LSM) and laser surface alloying (LSA) techniques was attempted. Both LSM and LSA were carried out in a nitrogeneous atmosphere. Niobium, molybdenum and zirconium were used as alloying elements in the LSA. A hardness increase was observed for both LSM and LSA. Maximum hardness was obtained for LSM and zirconium alloy addition. In LSM, hardness increased almost three-fold in comparison to the substrate, which has a Vickers hardness of 350, by the formation of TiN in the region of 100 m melt depth. Hardness then decreased slowly and reached a minimum of 580 VHN at the maximum melt depth of 750 m. However, hardness for the zirconium alloy addition was uniform throughout the melted zone. Ageing treatments were performed for all specimens at 450C and different ageing times. Hardness measurements and X-ray diffraction were utilized to delineate the features associated with the hardening of the melted zone.  相似文献   

4.
Surface hardening of Ti-6Al-4V alloy with laser surface melting (LSM) in a nitrogen atmosphere has been studied. In LSM, hardness increased almost three-fold in comparison to that of the substrate, the latter having a Vickers hardness of 350, by the formation of TiN in the range of 100m of melt depth. Hardness, then, decreased slowly and reached a minimum of 580 VHN at a maximum melt depth of 750m. -Ti was formed in the heat-affected zone (HAZ) with a VHN of 450. Ageing treatments were performed for all specimens at 450 °C and different ageing times (1–20h). Short ageing treatments increased the hardness in the melted zone as well as in the HAZ (1–3h). Long ageing treatments (7–20h) resulted in uniform hardness distribution in the melted zone.  相似文献   

5.
6.
Gas-pressure bulge forming of unreinforced Ti-6Al-4V and TiC-reinforced Ti-6Al-4V was performed while cycling the temperature around the allotropic transformation range of the alloy (880–1020 °C). The resulting domes exhibited very large strains to fracture without cavitation, demonstrating for the first time the use of transformation-mismatch superplasticity under a biaxial state of stress for both an alloy and a composite. Furthermore, much faster deformation rates were observed upon thermal cycling than for control experiments performed under the same gas pressure at a constant temperature of 1000°C, indicating that efficient superplastic forming of complex shapes can be achieved by transformation-mismatch superplasticity, especially for composites which are difficult to shape with other techniques. However, the deformation rate of the cycled composite was lower than for the alloy, most probably because the composite exhibits lower primary and secondary isothermal creep rates. For both cycled materials, the spatial distribution of principal strains is similar to that observed in domes deformed by isothermal microstructural superplasticity and the forming times can be predicted with existing models for materials with uniaxial strain rate sensitivity of unity. Thus, biaxial transformation-mismatch superplasticity can be modeled within the well-known frame of biaxial microstructural superplasticity, which allows accurate predictions of forming time and strain spatial distribution once the uniaxial constitutive equation of the material is known.  相似文献   

7.
The investigation into the microstructural characteristics of the segregation found occasionally in Ti-6Al-4V alloy showed that the segregated region was enriched in titanium but impoverished in aluminium and vanadium. It was also found that the interstitial content of oxygen and nitrogen was higher in the segregated region. The effect of the segregation on the mechanical properties of the alloy was also studied. The tensile strength, ductility and toughness of specimens with segregation were reduced to compare with values for as-received specimen. The micro-fracture mechanism associated with this segregation was analysed. The results revealed that the plastic deformation is mainly of shear mode in slip band. Microcracks were nucleated preferentially within the segregated region and this is believed to be the cause of brittle fracture on the basal plane (0001) and prismatic plane (10–10) in the hexagonal close packed lattice.  相似文献   

8.
Titanium aluminides are considered as replacements for superalloys in applications in gas turbine engines because of their outstanding properties. Ti3Al has a superior creep strength up to 815° C, but has poor oxidation resistance above 650° C. Two approaches can be followed to improve the oxidation resistance of Ti3Al above 650° C. One is alloying and the other obtaining a protective surface coating. Niobium was found to improve the oxidation resistance, when added as an alloying element. Recent investigations showed that a TiAl3 surface layer considerably improves the oxidation resistance of titanium. In the present work, a TiAl3 layer was obtained on a Ti-14Al-24Nb (wt%) alloy using a pack aluminizing process. The cyclic oxidation behaviour of aluminized and uncoated samples was evaluated.  相似文献   

9.
A textured coating of zirconia on Ti-6Al-4V alloy was produced using pulsed laser based processing technique. Scanning electron microscope observations coupled with fractal analysis revealed the multi-scale nature of the textured coating. Both stylus based profilometric measurements and fractal analysis indicated non-linear nature of the relationship between laser processing speed at constant pulse frequency (10 kHz) and roughness of the textured coating. The textured coatings produced with all the three processing speeds (40, 160, 290 cm/min) were fractal over certain length scales. Processing at 40 cm/min resulted in structures that are fractal across a large number of length scales where as higher processing speeds resulted in fractality over fewer length scales. The processing speed influenced the zirconia content in the coating and the phase transformation within Ti-matrix of the coating. Within the coating, while zirconia content decreased the amount of retained β-Ti increased with increase in processing speed. Such physical and chemical transformations are desired in a titanium bio-implant for effective contact with protein, cells and tissues at various length scales and its effective chemical performance in bio-environment.  相似文献   

10.
Microstructural assessment of laser nitrided Ti-6Al-4V alloy   总被引:1,自引:0,他引:1  
A microstructural study of the phases developed during the laser nitriding of a Ti-6Al-4V alloy by, using a CL5 continuous CO2 laser with a spinning beam and concentration of 80% nitrogen, was undertaken. The vertical sections, perpendicular to the melt track were examined by optical microscopy and scanning electron microscopy (SEM), while specimens for X-ray diffractometry (XRD), X-ray photospectroscopy (XPS) and transmission electron microscopy/selected area electron diffraction (TEM/SAED), were taken parallel to the melt track. In this way the variation in microstructure as a function of depth from the laser treated surface, was studied. This supplemented XRD and XPS investigations undertaken previously. Two zones were identified. Zone 1, within 50 m of the surface, contained well defined dendrites of fcc TiN0.8, plus hcp TiN0.3 and hcp Ti. Zone 2, below 50 m, consisted of needles of hcp Ti. From a consideration of the hardness profiles in Zone 2, it is suggested that at the top of the zone, the phase is, in fact, a solid solution containing 3–4% N, which decreased to <1% N at the bottom of the zone. The TEM/SAED study permitted the three phases fcc TiN0.8, hcp TiN0.3 and hcp Ti to be identified through a combination of morphology and SAED patterns. This also showed that the fccTiN0.8 contained fringes, which were considered to be stacking fault fringes and allowed this phase to be readily recognized in the TEM. The presence of stacking faults may be associated with the high nitrogen concentration of 80% used for the laser nitriding in this work.  相似文献   

11.
Abstract

The fatigue crack growth resistance of α–β titanium alloys can be altered by microstructural modification. During welding, the fusion zone microstructure depends on cooling rate. In the present work, the alloy Ti-6Al-4V was welded over a range of heat inputs, using electron beam and gas tungsten arc welding. The weld microstructure varied from predominantly martensitic under rapid cooling conditions to a mixture of martensite and diffusional products on slower cooling. Post-weld heat treatment resulted in a basketweave α–β aggregate that coarsened with temperature and time. In all welded and heat treated conditions, the fusion zone exhibited a fatigue crack growth resistance superior to that of the base material, which was in part attributed to the lamellar microstructure of the fusion zone. Welding residual stresses also played a beneficial role in the as welded condition. Post-weld heat treatment eliminated the advantage resulting from the welding stresses but not that as a result of microstructure.  相似文献   

12.
Commercially pure titanium and a Ti-6Al-4V alloy covered with a thin thermal oxide film derived from hot rolling were electrolytically hydrogenated in 1N aqueous sulfuric acid solution (H2SO4(aq)) to see the influence of thiourea (H2N-CS-NH2) on the hydrogen uptake of both metals under atmospheric conditions. The inhibitive effect of thiourea was evaluated through quantitative composition analyses (by using a glow discharge spectrometer, GDS) and qualitative microstructural examinations (by using XRD). Thiourea acts as a hydrogenation inhibitor irrespective of the applied current densities. However, the inhibitive effect is more evident at lower charging current densities for longer operating periods.  相似文献   

13.
The present investigation studies the effect of physiological solution at 37°C on the cyclic deformation behaviour of a Ti-6Al-4V alloy, with a microstructure corresponding to that obtained in the substrate when a sintered metallic porous coating is produced. Cyclic deformation tests have been carried out up to fracture and the fatigue crack nucleation mechanisms have been analysed. Since fatigue is a phenomenon related with plastic deformation, which is enhanced at corrosion and/or at stress concentration sites, cyclic deformation tests conducted at a level of stress above the elastic limit can provide a clear picture of the crack nucleation mechanisms involved.  相似文献   

14.
The cyclic stress-strain behavior and the S/N behavior of a “pseudo-elastic” alloy, Ti-6Al-4V of coarsened microstructure and of a “plastic” material, copper, are compared. In accord with views recently put forth by Freudenthal, important differences are noted between these two types of materials. These differences include the mode of crack initiation, the intensity of the Bauschinger effect, and the level below macroscopic yield at which long-life fatigue data lie.  相似文献   

15.
16.
Tensile and fatigue strength of hydrogen-treated Ti-6Al-4V alloy   总被引:1,自引:0,他引:1  
Tensile, fatigue and fractographic data on Ti-6Al-4V microstructures attained through a series of post--annealing treatments which used hydrogen as a temporary alloying element are presented. Hydrogen-alloying treatments break up the continuous grain boundary and colony structure, and produce a homogeneous microstructure consisting of refined -grains in a matrix of discontinuous . These changes in microstructural morphology result in significant increases of the yield strength (974 to 1119 MPa), ultimate strength (1025 to 1152 MPa) and high cycle fatigue strength (643 to 669 MPa) compared to respective values for lamellar microstructures (902, 994, 497 MPa). The strengths are also significantly greater than the strengths of equiaxed microstructures (914, 1000, 590 MPa). The strengths of hydrogen-alloy treated samples are therefore superior to strengths attainable via other thermal cycling techniques.The fatigue fracture surfaces of the hydrogen-alloy treated samples were topographically similar to equiaxed samples. Fatigue crack initiation was characterized by faceted regions. As crack length and K increased, the crack surface changed to a rounded, ductile topology, with microcracks and locally striated regions. Fracture primarily followed the - interfaces. This is rationalized by the fact that hydrogen-alloyed microstructures are very fine Widmanstatten microstructures having reduced aspect ratios, and these microstructures fail along - interfaces.  相似文献   

17.
为研究除氢处理对置氢钛合金组织与性能的影响,对Ti-6Al-4V合金在不同参数条件下进行了置氢与除氢处理,采用光学显微镜分析了置氢-除氢处理过程中Ti-6Al-4V合金微观组织的演化规律,通过室温拉伸试验研究了置氢-除氢处理后Ti-6Al-4V合金的力学性能,探讨了Ti-6Al-4V合金置氢-除氢组织与力学性能之间的相...  相似文献   

18.
Low-cycle fatigue (LCF) behaviour of the alloy Ti-27Al-15Nb, in (α 2+B2) heat-treated condition was studied in total axial strain control mode at different total strain amplitudes (Δɛ 1/2) from ±0·65 to ±1·0% and room temperature. While there was little hardening of the material at the lowest strain amplitude (Δɛ t/2: ±0·65%), pronounced hardening was observed at the higher strain amplitudes (Δɛ t/2⩾0·83%). The cyclic stress, at high strain amplitudes, continuously increased from the beginning till fracture of the specimens. The LCF resistance of the material was found to be low and this was due to its poor ductility at room temperature. Dual slope was observed in the Coffin-Manson plot, with less slope of the upper segment than that of the lower one, as observed in several alloys. The fracture behaviour pointed to brittleness and faceted features were observed.  相似文献   

19.
The titanium alloys are potential materials for high temperature applications in turbine components due to their very high temperature strength and lightweight properties. However, hot corrosion is a life-limiting factor when Ti alloys are exposed to different chemical environments at high temperature. In the present paper, hot corrosion behavior of Ti-6Al-4V (Ti-31) alloy in different salt environments viz. air, Na2SO4-60% V2O5 and Na2SO4-50% NaCl at 750 °C was studied. The parabolic rate constants were calculated for different environments from the thermo-gravimetric data obtained for the samples and they show that corrosion rate is minimum in air when compared to chemical environment. The scale formed on the samples upon hot corrosion was characterized by using X-ray diffraction (XRD), SEM, and EDAX analysis to understand the degradation mechanisms.  相似文献   

20.
The paper analyses, at nanoscale levels, the chemical composition and mechanical properties of the anodic oxide films formed on Ti-6Al-4V alloy by galvanostatic polarization at maximum final voltages of 12-100 V. For the investigations Auger Electron Spectroscopy, Photoelectron Spectroscopy and nanoindentation measurements have been used. The results have shown that anodizing the Ti-6Al-4V alloy produces an oxide film whose thickness depends on the final voltage. The chemical composition is not significantly dependent on the thickness, the film consists of TiO2 and Al2O3. However, the best insulating properties of the films, determined from the growth parameter nm/V, are achieved with a final voltage between 30 and 65 V. Nanohardness and Young's modulus measurements have shown that the anodic films formed by different voltages exhibit similar mechanical properties which is consistent with the results of the surface analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号