首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This paper presents theoretical and experimental results of a low-power-consuming hybrid push-pull self-oscillating mixer (SOM) circuit at the UHF frequency band. The frequency-stable SOM circuit is designed and fabricated using matched-pair Si bipolar junction transistors and high-Q resonators, where measured phase noise of this free-running voltage-controlled oscillator is -101.2 dBc/Hz at 100-kHz offset. A 20-dB up-conversion gain, a compression dynamic range (CDR) of 65 dB·MHz, and a spurious-free dynamic range of 50 dB·MHz 2/3 are also measured for the mixer portion of this SOM. Moreover, a down-conversion gain of ≈-2 dB with a CDR of 100 dB·MHz is also measured  相似文献   

2.
A hearing-aid system with RF connection between both ear-pieces is described and its transceiver is introduced. A suitable 200-MHz RF front end has been implemented in a 0.8-μm BiCMOS technology. Low power consumption and area constraint were key requirements. The chip comprises a low noise amplifier (LNA), a single balanced mixer, a varactor tuned LC local oscillator with buffer and a 16/17 dual-modulus prescaler. The LNA has a measured gain of 17.5 dB at 200 MHz. The conversion gm of the mixer is 1.88 mS. The overall voltage gain and noise figure are 26 dB and 5.2 dB, respectively. The voltage-controlled oscillator's (VCO's) phase noise is -104.7 dBc/Hz at an offset of 24 kHz  相似文献   

3.
A single-chip receiver for the 2.44 GHz band has been designed. To minimize the number of chip connections as well as external components, an image rejecting architecture has been chosen. A two-stage voltage controlled ring oscillator is used as a quadrature LO-source. The IF phase relationship is achieved with RC allpass circuits. Special attention is paid to keep the design insensitive to process variations. The 3-mm2 chip has been fabricated with commercial 1-μm E/D GaAs MESFET technology and comprises an RF preamplifier, a voltage controlled ring oscillator, a phasing type image reject mixer, an IF preamplifier and a prescaler (division by 16). Except for the power supply and the frequency tuning voltage, no external components are required for basic operation. Prototype devices from two wafer runs were investigated. Power consumption from a single supply voltage of 5 V is 0.6 W. An image rejection of 34 dB is measured over a 130 to 280 MHz IF bandwidth. With a simple input symmetrizing and matching network, a conversion gain of 34 dB and a noise figure of 6.5 dB are achieved. The short term frequency instability of the free running ring oscillator is 400 kHz. With simple passive analog phase lock circuitry, an SSB phase noise of -74 dBc/Hz at 100 kHz offset is attained  相似文献   

4.
This paper presents a fully integrated dual-antenna phased-array RF front-end receiver architecture for 60-GHz broadband wireless applications. It contains two differential receiver chains, each receiver path consists of an on-chip balun, agm-boosted current-reuse low-noise amplifier (LNA), a sub-harmonic dual-gate down-conversion mixer, an IF mixer, and a baseband gain stage. An active all-pass filter is employed to adjust the phase shift of each LO signal. Associated with the proposed dual conversion topology, the phase shift of the LO signal can be scaled to one-third. Differential circuitry is adopted to achieve good common-mode rejection. The gm-boosted current-reuse differential LNA mitigates the noise, gain, robustness, stability, and integration challenges. The sub-harmonic dual-gate down-conversion mixer prevents the third harmonic issue in LO as well. Realized in a 0.13-mum 1P8M RF CMOS technology, the chip occupies an active area of 1.1 times 1.2 mm2. The measured conversion gain and input P1 dB of the single receiver path are 30 dB and -27 dBm , respectively. The measured noise figure at 100 MHz baseband output is around 10 dB. The measured phased array in the receiver achieves a total gain of 34.5 dB and theoretically improves the receiver SNR by 4.5 dB. The proposed 60 GHz receiver dissipates 44 mW from a 1.2 V supply voltage. The whole two-channel receiver, including the vector modulator circuits for built-in testing, consumes 93 mW from a 1.2 V supply voltage.  相似文献   

5.
A down-conversion in-phase/quadrature (I/Q) mixer employing a folded-type topology, integrated with a passive differential quadrature all-pass filter (D-QAF), in order to realize the final down-conversion stage of a 60 GHz receiver architecture is presented in this work. Instead of employing conventional quadrature generation techniques such as a polyphase filter or a frequency divider for the local oscillator (LO) of the mixer, a passive D-QAF structure is employed. Fabricated in a 65 nm CMOS process, the mixer exhibits a voltage gain of 7-8 dB in an intermediate frequency (IF) band ranging from 10 MHz-1.75 GHz. A fixed LO frequency of 12 GHz is used to down-convert a radio frequency (RF) band of 10.25-13.75 GHz. The mixer displays a third order input referred intercept point (IIP3) ranging from -8.75 to -7.37 dBm for a fixed IF frequency of 10 MHz and a minimum single-sideband noise figure (SSB-NF) of 11.3 dB. The mixer draws a current of 6 mA from a 1.2 V supply voltage dissipating a power of 7.2 mW.  相似文献   

6.
A low phase noise and low power LC voltage-controlled oscillator (VCO) has been designed using a 65-nm CMOS process. The phase noise is minimized by switching the differential core using a rectangular shaped voltage waveform, which is formed by a harmonic tuned LC tank assisted by a gm3 boosting circuit. The gm3 boosting circuit effectively maximizes the slope at the zero crossing point and reduces the transition time in which the switching transistor is operated at the triode region. The rectangular switching technique has improved the phase noise of the oscillator by 10 dB. The 450 mum times 540 mum chip consumes 4.34 mW. The proposed VCO has phase noises of -83.3, -110.7, and -131.8 dBc/Hz at 10 KHz, 100 KHz, and 1 MHz offset frequencies, respectively, from the 1.6-GHz carrier frequency.  相似文献   

7.
顾明  石寅  代伐 《半导体学报》2006,27(7):1159-1163
分析了一种宽带高线性度的用于有线接收机的下变频混频器.该设计采用0.35μm SiGe BiCMOS工艺.射频输入信号频率范围设计为1~1.8GHz,测得的1dB压缩点达到+14.23dBm,最大转换增益为8.31dB,最小噪声系数为19.4dB,在5V供电情况下,直流功耗为54mW.  相似文献   

8.
Scaling of CMOS technologies has a great impact on analog design. The most severe consequence is the reduction of the voltage supply. In this paper, a low voltage, low power, AC-coupled folded-switching mixer with current-reuse is presented. The main advantages of the introduced mixer topology are: high voltage gain, moderate noise figure, moderate linearity, and operation at low supply voltages. Insight into the mixer operation is given by analyzing voltage gain, noise figure (NF), linearity (IIP3), and DC stability. The mixer is designed and implemented in 0.18-/spl mu/m CMOS technology with metal-insulator-metal (MIM) capacitors as an option. The active chip area is 160 /spl mu/m/spl times/200 /spl mu/m. At 2.4 GHz a single side band (SSB) noise figure of 13.9 dB, a voltage gain of 11.9 dB and an IIP3 of -3 dBm are measured at a supply voltage of 1 V and with a power consumption of only 3.2 mW. At a supply voltage of 1.8 V, an SSB noise figure of 12.9 dB, a voltage gain of 16 dB and an IIP3 of 1 dBm are measured at a power consumption of 8.1 mW.  相似文献   

9.
采用标准的0.13μm CMOS工艺实现了0.5V电源电压,3GHz LC压控振荡器。为了适应低电压工作,并实现低相位噪声,该压控振荡器采用了NMOS差分对的电压偏置振荡器结构,去除尾电流,以尾电感代替,采用感性压控端,增加升压电路结构使变容管的一端升压,这样控制电压变化范围得到扩展。测试结果显示,当电源电压为0.5V,振荡频率为3.126GHz时,在相位噪声为-113.83dBc/Hz@1MHz,调谐范围为12%,核心电路功耗仅1.765mW,该振荡器的归一化品质因数可达-186.2dB,芯片面积为0.96mm×0.9mm。  相似文献   

10.
设计了一种用于900MHz RFID阅读器的零中频正交下变频混频器,该混频器采用共跨导级正交结构,并利用电流注入技术减小噪声,在UMC0.18μmCMOS工艺下实现。整个芯片分为三部分,混频器、带隙基准以及缓冲器,总面积为1.1mm2。混频器在1.8V电压下消耗电流3.7mA,带宽范围880~940MHz,增益16.42dB,三阶截点为-4.625dBm,在100kHz处噪声系数为15.2dB。芯片能够达到阅读器的性能要求。  相似文献   

11.
In this paper, a 1.2-V RF front-end realized for the personal communications services (PCS) direct conversion receiver is presented. The RF front-end comprises a low-noise amplifier (LNA), quadrature mixers, and active RC low-pass filters with gain control. Quadrature local oscillator (LO) signals are generated on chip by a double-frequency voltage-controlled oscillator (VCO) and frequency divider. A current-mode interface between the downconversion mixer output and analog baseband input together with a dynamic matching technique simultaneously improves the mixer linearity, allows the reduction of flicker noise due to the mixer switches, and minimizes the noise contribution of the analog baseband. The dynamic matching technique is employed to suppress the flicker noise of the common-mode feedback (CMFB) circuit utilized at the mixer output, which otherwise would dominate the low-frequency noise of the mixer. Various low-voltage circuit techniques are employed to enhance both the mixer second- and third-order linearity, and to lower the flicker noise. The RF front-end is fabricated in a 0.13-/spl mu/m CMOS process utilizing only standard process options. The RF front-end achieves a voltage gain of 50 dB, noise figure of 3.9 dB when integrated from 100 Hz to 135 kHz, IIP3 of -9 dBm, and at least IIP2 of +30dBm without calibration. The 4-GHz VCO meets the PCS 1900 phase noise specifications and has a phase noise of -132dBc/Hz at 3-MHz offset.  相似文献   

12.
In this paper, we present the receiver and the on-chip antenna sections of a fully integrated 77-GHz four-element phased-array transceiver with on-chip antennas in silicon. The receiver section of the chip includes the complete down-conversion path comprising low-noise amplifier (LNA), frequency synthesizer, phase rotators, combining amplifiers, and on-chip dipole antennas. The signal combining is performed using a novel distributed active combining amplifier at an IF of 26 GHz. In the LO path, the output of the 52-GHz VCO is routed to different elements and can be phase shifted locally by the phase rotators. A silicon lens on the backside is used to reduce the loss due to the surface-wave power of the silicon substrate. Our measurements show a single-element LNA gain of 23 dB and a noise figure of 6.0dB. Each of the four receive paths has a gain of 37 dB and a noise figure of 8.0 dB. Each on-chip antenna has a gain of +2 dBi  相似文献   

13.
This paper presents the design and implementation of an L1/L2 dual-band global positioning system (GPS) receiver. Dual-conversion with a low-IF architecture was used for dual-band operation. The receiver is composed of an RF preamplifier, down-conversion mixers, a variable-gain channel filter, a 2-bit analog-to-digital converter, and the full phase-locked-loop synthesizer including an on-chip voltage controlled oscillator. Fabricated in a 0.18-/spl mu/m CMOS technology, the receiver exhibits maximum gain of 95 dB and noise figures of 8.5 and 7.5 dB for L1 and L2, respectively. An on-chip variable-gain channel filter provides IF image rejection of 20 dB and gain control range over 60 dB. The receiver consumes 19 mW from a 1.8-V supply while occupying a 2.6-mm/sup 2/ die area including the ESD I/O pads.  相似文献   

14.
A downconversion double-balanced oscillator mixer using 0.18-/spl mu/m CMOS technology is proposed in this paper. This oscillator mixer consists of an individual mixer stacked on a voltage-controlled oscillator (VCO). The stacked structure allows entire mixer current to be reused by the VCO cross-coupled pair to reduce the total current consumption of the individual VCO and mixer. Using individual supply voltages and eliminating the tail current source, the stacked topology requires 1.0-V low supply voltage. The oscillator mixer achieves a voltage conversion gain of 10.9 dB at 4.2-GHz RF frequency. The oscillator mixer exhibits a tuning range of 11.5% and a single-sideband noise figure of 14.5 dB. The dc power consumption is 0.2 mW for the mixer and 2.94 mW for the VCO. This oscillator mixer requires a lower supply voltage and achieves a higher operating frequency among recently reported Si-based self-oscillating mixers and mixer oscillators. The mixer in this oscillator mixer also achieves a low power consumption compared with recently reported low-power mixers.  相似文献   

15.
张磊  付兴昌  刘志军  徐伟 《半导体技术》2017,42(8):586-590,625
基于GaN高电子迁移率晶体管(HEMT)工艺设计制作了一款收发(T/R)多功能芯片(MFC),主要用于射频前端收发系统.该芯片集成了单刀双掷(SPDT)开关用于选择接收通道或发射通道工作,芯片具有低噪声性能、高饱和输出功率和高功率附加效率等特点.芯片接收通道的LNA采用四级放大、单电源供电、电流复用结构,发射通道的功率放大器采用三级放大、末级四胞功率合成结构,选通SPDT开关采用两个并联器件完成.采用微波在片测试系统完成该芯片测试,测试结果表明,在13~ 17 GHz频段内,发射通道功率增益大于17.5 dB,输出功率大于12W,功率附加效率大于27%.接收通道小信号增益大于24 dB,噪声系数小于2.7 dB,1 dB压缩点输出功率大于9 dBm,输入/输出电压驻波比小于1.8∶1,芯片尺寸为3.70 mm×3.55 mm.  相似文献   

16.
This paper presents a 0.18-/spl mu/m CMOS direct-conversion IC realized for the Universal Mobile Telecommunication System (UMTS). The chip comprises a variable gain low-noise amplifier, quadrature mixers, variable gain amplifiers, and local oscillator generation circuits. The solution is based on very high dynamic range front-end blocks, a low-power superharmonic injection-locking technique for quadrature generation and continuous-time dc offset removal. Measured performances are an overall gain variable between 21 and 47 dB, 5.6 dB noise figure, -2 dBm out-of-band IIP3, -10 dBm in-band IIP3, 44.8-dBm minimum IIP2, and -155-dBc/Hz phase noise at 135 MHz from carrier frequency, while drawing 21 mA from a 1.8-V supply.  相似文献   

17.
This letter presents an integrated direct-injection locked quadrature voltage controlled oscillator (VCO), consisted of a 5-GHz VCO integrated with injection locked LC frequency dividers for low-power quadrature generation. The circuit is implemented using a standard 0.18-mum CMOS process. The differential VCO is a full PMOS Colpitts oscillator, and the frequency divider is performed by adding an injection nMOS between the differential outputs of complementary cross-coupled np-core LC VCO. The measurement results show that at the supply voltage of 1.8-V, the master 5-GHz VCO is tunable from 4.73 to 5.74GHz, and the slave 2.5-GHz VCO is tunable from 2.36 to 2.87GHz. The measured phase noise of master VCO is -118.2dBc/Hz while the locked quadrature output phase noise is -124.4dBc/Hz at 1-MHz offset frequency, which is 6.2dB lower than the master VCO. The core power consumptions are 7.8 and 8.7mW at master and slave VCOs, respectively  相似文献   

18.
This work presents a single-ended active mixer realized with a 0.13 /spl mu/m BiCMOS SiGeC heterojunction bipolar transistor (HBT) technology. This mixer is designed to be integrated in a superheterodyne receiver for 40 GHz wireless communication systems. Local oscillator (LO) and RF signals are directly applied to the base of the HBT through two coupled lines. The mixer provides a down-conversion from 42 GHz to 2 GHz. The mixer exhibits a power conversion gain better than 2.4 dB and a measured double-sideband noise figure less than 8.3 dB for P/sub LO/=3 dBm (power of the local oscillator) under a global power consumption lower than 9.5 mW. This architecture exhibits good linearity performance with a measured IP/sub 1dB/ of about -7 dBm and an IIP3 of +4 dBm. The linear dynamic range for a 2 GHz system bandwidth is approximately 65 dB for P/sub LO/=+2 dBm and T/sub 0/=290 K. The third order spurious free dynamic range is calculated to be better than 52 dB.  相似文献   

19.
A complementary metal oxide semiconductor (CMOS) voltage controlled ring oscillator for ultra high frequency (UHF) radio frequency identification (RFID) readers has been realized and characterized. Fabricated in charter 0.35 μm CMOS process, the total chip size is 0.47×0.67 mm2. While excluding the pads, the core area is only 0.15×0.2 mm2. At a supply voltage of 3.3 V, the measured power consumption is 66 mW including the output buffer for 50 Ω testing load. This proposed voltage-controlled ring oscillator exhibits a low phase noise of - 116 dBc/Hz at 10 MHz offset from the center frequency of 922.5 MHz and a lower tuning gain through the use of coarse/fine frequency control.  相似文献   

20.
Xuan  K. Tsang  K.F. Lee  S.C. Lee  W.C. 《Electronics letters》2009,45(19):979-981
A high-performance mixer, known as the amplifier-driven double-balanced Gilbert-cell mixer, is proposed and implemented in 0.18 mum RFCMOS technology. A class-A amplifier-based current bleeding source is used to amplify the local oscillator signal and improve transconductance of the transconductor stage. The conversion gain is measured to be 17.5 dB when the LO power is 14 dBm only. The measured noise figure is better than 12.5 dB. The chip area is 1.2 1.3 mm and the power consumption is 12 mA at 1.5 V supply voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号