首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
γ—TiAl基合金超塑扩散焊接   总被引:2,自引:0,他引:2  
利用激光快速熔凝表面技术,在Ti-45Al-2Mn-2Nb(原子分数,%)+0.8%TiB2(体积分数)合金试样表面上获得细晶组织,并对其进行了超塑扩散焊接,研究表明,经过激光处理后,试样表面形成了熔化区、固态相变区,其中表面熔化区的织以胞状枝晶组织为主,经过等温处理后,在试样表层形成了等轴细晶组织,在该表面上对试样进行超塑扩散焊接,结果表明,在900℃和60MPa条件下,由于细晶组织具有良好的超塑性,可以通过晶界滑移进行超塑变形和原子扩散,在较短的时间内实现合金的超塑连接。  相似文献   

2.
γ—TiAl基合金的表面激光处理及超塑性扩散连接   总被引:3,自引:0,他引:3  
较系统地研究了AiAl基合金激光快速熔凝组织细化特征及该类组织的超塑连接规律。结果表明,激光处理后试样表面熔凝区的组织主要为胞状枝晶组织,经后续热处理后转变为细小的等轴晶粒组织,并形成了良好的超塑连接条件。利用该表面组织对试样进行超塑扩散连接,探讨了连接温度,压力和时间对连接效果的影响。表面细化组织试样与整体细化组织试样的超塑连接具有基本相同的连接规律,在连接温度900℃,连接压力60MPa,连接时间1h条件下,可以实现试样的超塑扩散连接。  相似文献   

3.
主要对采用扩散连接(DB)或超塑扩散连接(SPF/DB)的方法,实现TiAl合金与异种合金(Ti-6Al-4V、40Cr钢和Ni基合金)固态连接的研究进行评述,探讨了连接工艺对连接界面显微组织及其连接件性能的影响。研究结果表明,扩散连接(或超塑扩散连接)能实现TiAl合金与异种合金高质量的连接。而扩散连接过程中,在扩散层产生的脆性相是导致焊件断裂发生在界面处的主要原因。采用中间层可有效避免脆性相的生成,而采用激光表面快凝处理,在拟连接表面获得细晶组织,可在较低温度下实现TiAl合金与异种合金的超塑扩散连接。  相似文献   

4.
激光表面改性Ni基合金/γ-TiAl合金的扩散连接   总被引:1,自引:0,他引:1  
采用激光表面熔覆技术研究了Ni基合金激光表面熔覆涂层制备工艺及拟连接表面显微组织特征,探讨了TiAl基合金/Ni基合金的超塑扩散连接。研究结果表明,采用激光表面熔覆技术可在Ni基合金表层形成细小的由α2和γ相组成的枝晶组织,其与γ-TiAl合金快速熔凝组织具有相同的组织特征。激光熔覆TiAl合金涂层改善了TiAl基合金与Ni基合金的连接效果,在连接温度900℃、连接压力60MPa和连接时间1h条件下,即可实现TiAl基合金与Ni基合金的连接。  相似文献   

5.
镍基合金激光熔覆γ-TiAl基合金涂层组织研究   总被引:2,自引:0,他引:2  
研究了镍基合金激光熔覆γ-Tial基合金涂层的组织特征,以及后续热处理对涂层组织转变的影响。结果表明,通过激光熔覆技术,在镍基合金表层获得了与γ-Tial基合金激光表层熔凝区相近的枝晶组织。这种组织经过后续退火热处理可形成细小的等轴晶组织,为实现镍基合金/γ-Tial基合金的超塑扩散连接提供了良好的组织基础。  相似文献   

6.
球墨铸铁凸轮轴的激光表面熔凝处理   总被引:7,自引:0,他引:7  
分析了激光表面熔凝处理后球墨铸铁凸轮轴硬化层的组织和性能特点,并与其它强化方法进行了比较。结果表明,采用适当的激光表面熔凝处理工艺参数,可以在表面获得搭接均匀、表面硬度大于80HRA和厚度达1.0mm的硬化层;硬化层由熔凝层和淬硬层组成,其中熔凝层的基体组织主要为细小、均匀并且有一定方向性的亚共晶莱氏体,淬硬层主要由石墨球及其周围的硬质环、细马氏体和铁素体基体所组成。与其它铸铁凸轮轴强化方法相比,激光表面熔凝处理具有表面硬度高、组织细小均匀、零件畸变小和不影响心部性能等优点。  相似文献   

7.
不锈钢激光表面熔凝处理的组织特征   总被引:13,自引:0,他引:13  
不锈钢经激光表面熔凝处理后,其组织形态发生了显著的变化,在表面熔凝层中分别出现白亮带、细胞晶、胞枝结构以及紊乱枝晶组织,对其形成原因进行了分析.在激光熔池中观察到典型的胞枝转变,对转变的临界条件进行了深入研究,结果表明:实验确定的胞枝转变临界速度与最近提出的BJT模型的预言值符合得较好.  相似文献   

8.
基于非Fourier定律,建立了脉冲激光加热条件下单相二元合金表面快速重熔和凝固过程的非平衡传热传质模型,并根据碰撞理论和Aziz的连续生长模型处理固/液界面,以解释快速熔凝过程界面动力学的非平衡效应,快速熔凝问题是涉及热质传输的移动界面问题,通过二阶精度的Von Neumann隐式差分格式和界面跟踪方法进行过程模型的数值求解。应用该模型,分析了Al-Cu二元合金的激光表面熔凝过程,结果表明,激光的高能量密度和非平衡界面动力学所引起的熔化过程和凝固过冷对于快速熔凝过程的影响很大,在快速熔凝过程中,界面速度的变化很大,且因基底材料和热流大小而不同,通过计算获得了界面温度,速度、溶质浓度及非平衡分配系数随界面位置的变化,结果显示,在凝固过程中界面速度和界面溶质浓度都存在着很大的波动。  相似文献   

9.
在各种类型超塑性中,细晶超塑性是目前国内外研究得最为广泛的一种。获得细晶超塑性的基本条件之一是材料应具有微细等轴晶粒,一般晶粒尺寸应小于10μm,最好在0.5~1.5μm,并应保持等轴状[1,2]。此外,在超塑性温度下,晶粒还应具有较好的热稳定性。而获得这种晶粒与热加工工艺,特别是热处理工艺密切相关。1为什么要获得微细等轴晶粒普遍认为,超塑变形是晶界行为起主要作用。细晶超塑性变形的主要机制是有扩散蠕变、晶内滑移等机制协调的晶界滑移[3]。晶界迁移、晶界滑移有助于在超塑变形过程中的应力松弛,提高塑性,防止裂纹产生…  相似文献   

10.
张维平  刘硕 《铸造》2005,54(1):28-31
高能密度激光束作用于金属材料表面将使材料表层组织及后续使用性能发生巨大改变.本文综述了激光处理对改性材料表层组织主要是激光熔凝、激光熔覆过程中得到的非平衡快速凝固组织及性能的影响,并对该领域的研究进行了展望.  相似文献   

11.
12.
13.
论述了CAD技术中参数化设计的三种建模方法,重点介绍了基于特征的参数化建模原理。在此基础上,分析机械设计中的机构结构,归纳出其零件的几何特征构成。设计了机构CAD图形库,并提出了该图形库生成步骤和人机交互界面。  相似文献   

14.
刘兴  赵霞 《表面技术》2008,37(1):37-39
采用激光辐照对FeCrAlW电弧喷涂层的组织进行致密化处理,借助扫描电镜和X衍射对涂层的组织进行了分析.测试了涂层的显微硬度.结果表明:涂层组织致密度提高,孔隙率明显降低.随着激光扫描速度的增加,涂层的显微硬度降低.在较低的扫描速度下,涂层与基体之间形成互熔区,涂层与基体之间产生良好的冶金结合.  相似文献   

15.
16.
扫描电镜观察显示胫骨是一种由羟基磷灰石和胶原蛋白组成的自然生物陶瓷复合材料.羟基磷灰石具有层状的微结构并且平行于骨的表面排列.观察也显示这些羟基磷灰石层又是由许多羟基磷灰石片所组成,这些羟基磷灰石片具有长而薄的形状,也以平行的方式整齐排列.基于在胫骨中观察到的羟基磷灰石片的微结构特征,通过微结构模型分析及实验,研究了羟基磷灰石片平行排列微结构的最大拔出能.结果表明,羟基磷灰石片长而薄的形状以及平行排列方式增加了其最大拔出能,进而提高了骨的断裂韧性.  相似文献   

17.
18.
高等教育国际化与中国高等教育施化力培育   总被引:5,自引:2,他引:5  
本文从化层、化型、化向与化力等方面考察高等教育国际化的应然本质属性 ,描述与分析中国高等教育在国际化潮流中表现出的发展态势 ,针对种种态势提出中国高等教育核心施化力培育战略 ,以使中国高等教育乃至世界高等教育真正地走向国际化  相似文献   

19.
This paper describes the general features of the functional methods of electrohydropulse, pulse electrocurrent, and magnetic pulse treatment processes of the melt in order to positively vary its crystallizaton ability.  相似文献   

20.
Conclusion In alloy Fe-42% W atomized with a cooling rate during solidification within the limits from 5·103 to 1·105°C/sec with the maximum cooling rate (not less than 105°C/sec) precipitation of -phase (Fe7W6) from the liquid melt is suppressed. In granules of alloy obtained with a high solidification rate it is possible to achieve total dissolution of tungsten in solid solution (42%). Subsequent heating causes precipitation of -phase in dispersed form.I. P. Bardin Central Scientific-Research Institute of Ferrous Metallurgy (TsNIIChERMET) Moscow. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 34–36, September, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号