首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Grain growth of ZnO during the liquid-phase sintering of binary ZnO–Bi2O3 ceramics has been studied for Bi2O3 contents from 3 to 12 wt% and sintering from 900° to 1400°C. The results are considered in combination with previously published studies of ZnO grain growth in the ZnO–Bi2O3 system. For the Bi2O3 contents of the present study, the rate of ZnO grain growth is found to decrease with increasing Bi2O3. Activation analysis, when combined with the results of similar analyses of the previous studies, reveals a change in the rate-controlling mechanism for ZnO grain growth. Following a low-Bi2O3-content region of nearly constant activation energy values of about 150 kJ/mol, further Bi2O3 additions cause an increase of the activation energy to about 270 kJ/mol. consistent with accepted models of liquid-phase sintering, it is concluded that the rate-controlling mechanism of ZnO grain growth during liquid-phase sintering in the presence of Bi2O3 changes from one of a phase-boundary reaction at low Bi2O3 levels to one of diffusion through the liquid phase at about the 5 to 6 wt% Bi2O3 level and above.  相似文献   

2.
Preventing the incorporation of impurities in Li-Zn ferrite grains during sintering is essential for production of ceramics with reproducible magnetic and electrical properties. Li-Zn ferrites of composition Li0.3Zn0.4Mn0.05Fe2.25O4 were prepared with Bi2O3 and borosilicate sintering additives. The distribution of impurity ions in the sintered ferrites was investigated using transmission electron microscopy (TEM) coupled with energy dispersive spectroscopy (EDS). Ceramics prepared with Bi2O3 contained Si, Ca, and S impurities, located at grain boundaries and triple point regions. The low viscosity and good wetting properties of the Bi2O3 and to a lesser extent the borosilicate liquid phase allowed impurities to be selectively removed from the growing ferrite phase during sintering, thus improving sample resistivities.  相似文献   

3.
Grain growth in a high-purity ZnO and for the same ZnO with Bi2O3 additions from 0.5 to 4 wt% was studied for sintering from 900° to 1400°C in air. The results are discussed and compared with previous studies in terms of the phenomenological kinetic grain growth expression: G n— G n0= K 0 t exp(— Q/RT ). For the pure ZnO, the grain growth exponent or n value was observed to be 3 while the apparent activation energy was 224 ± 16 kJ/mol. These parameters substantiate the Gupta and Coble conclusion of a Zn2+ lattice diffusion mechanism. Additions of Bi2O3 to promote liquidphase sintering increased the ZnO grain size and the grain growth exponent to about 5, but reduced the apparent activation energy to about 150 kJ/mol, independent of Bi2O3 content. The preexponential term K 0 was also independent of Bi2O3 content. It is concluded that the grain growth of ZnO in liquid-phase-sintered ZnO-Bi2O3 ceramics is controlled by the phase boundary reaction of the solid ZnO grains and the Bi2O3-rich liquid phase.  相似文献   

4.
Zinc oxide (ZnO) nanoparticles coated with 1–5 wt% Bi2O3 were prepared by precipitating a Bi(NO3)3 solution onto a ZnO precursor. Transmission electron microscopy showed that a homogeneous Bi2O3 layer coated the surface of the ZnO nanoparticles and that the ZnO particle size was ∼30–50 nm. Scanning electron microscopy showed that ZnO grains sintered at 1150°C were homogeneous in size and surrounded by a uniform Bi2O3 layer. When the ZnO grains were surrounded fully by Bi2O3 liquid phases, further increases in the ZnO grain size were not affected by the Bi2O3 content. This predesigned ZnO nanoparticle structure was shown to promote homogeneous ZnO grains with perfect crystal growth.  相似文献   

5.
Grain growth of ZnO during liquid-phase sintering of a ZnO-6 wt% Bi2O3 ceramic was investigated for A12O3 additions from 0.10 to 0.80 wt%. Sintering in air for 0.5 to 4 h at 900° to 1400°C was studied. The AI2O3 reacted with the ZnO to form ZnAl2O4 spinel, which reduced the rate of ZnO grain growth. The ZnO grain-growth exponent was determined to be 4 and the activation energy for ZnO grain growth was estimated to be 400 kJ/mol. These values were compared with the activation parameters for ZnO grain growth in other ceramic systems. It was confirmed that the reduced ZnO grain growth was a result of ZnAl2O4 spinel particles pinning the ZnO grain boundaries and reducing their mobility, which explained the grain-growth exponent of 4. It was concluded that the 400 kJ/mol activation energy was related to the transport of the ZnAl2O4 spinel particles, most probably controlled by the diffusion of O2- in the ZnAl2O4 spinel structure.  相似文献   

6.
Lead-free piezoelectric (K0.5Na0.5)NbO3– x wt% Bi2O3 ceramics have been synthesized by an ordinary sintering technique. The addition of Bi2O3 increases the melting point of the system and improves the sintering temperature of (K0.5Na0.5)NbO3 ceramics. All samples show a pure perovskite phase with a typical orthorhombic symmetry when the Bi2O3 content <0.7 wt%. The phase transition temperature of orthorhombic–tetragonal ( T O − T ) and tetragonal–cubic ( T C) slightly decreased when a small amount of Bi2O3 was added. The remnant polarization P r increased and the coercive field E c decreased with increasing addition of Bi2O3. The piezoelectric properties of (K0.5Na0.5)NbO3 ceramics increased when a small amount of Bi2O3 was added. The optimum piezoelectric properties are d 33=140 pC/N, k p=0.46, Q m=167, and T C=410°C for (K0.5Na0.5)NbO3–0.5 wt% Bi2O3 ceramics.  相似文献   

7.
The effect of the addition of Bi2O3 on the densification, low-temperature sintering, and electromagnetic properties of Z-type planar hexaferrite was investigated. The results show that Bi2O3 additives can improve the densification and promote low-temperature sintering of Z-type hexaferrite prepared by a solid-state reaction method. The presence of Bi2O3 in the grain boundaries and the generation of Fe2+ degrade the initial permeability of the samples but make the quality factor and cut-off frequency increase. Various possible mechanisms involved in generating these effects were also discussed.  相似文献   

8.
Pore–boundary separation in ZnO and 99.95ZnO·0.05Bi2O3 (in mol%) specimens during sintering at 1200°C was investigated. In pure ZnO specimens, pores were attached to the grain boundaries and disappeared during the final stage of sintering. In the Bi2O3-doped specimens, on the other hand, many pores were separated from the boundaries and trapped inside the grains. Observation using transmission electron microscopy showed that a thin layer of Bi2O3-rich phase existed at the boundaries in the Bi2O3-doped specimens. The pore separation in 99.95ZnO·0.05Bi2O3 specimens was explained in terms of the dihedral angle change and the high mobility of a liquid film boundary.  相似文献   

9.
The effects of adding small quantities of SnO2 to the basic ZnO–Bi2O3 varistor composition were studied in terms of phase reactions, microstructural development, and the formation of inversion boundaries. Scanning and transmission electron microscopy studies showed that the inversion boundaries, triggered by the addition of SnO2, cause anisotropic grain growth in the early stages of sintering. ZnO grains that include inversion boundaries grow exaggeratedly, at the expense of normal grains, until they dominate the microstructure. Higher additions of SnO2 lead to an increase in number of grains with inversion boundaries and to a more fine-grained microstructure. The increasing amount of secondary phases is also related to a higher level of SnO2 addition; however, the influence of these phases on ZnO grain growth is subordinate to the role of inversion boundaries.  相似文献   

10.
Detailed analysis of the microstructure of grain boundaries, especially triple-grain and multiple-grain junctions, in ZnO varistor materials has been performed using transmission electron microscopy. Different polymorphs of Bi2O3 are shown to exhibit different wetting properties on ZnO interfaces. Recent investigations suggest that the equilibrium configuration consists of crystalline Bi2O3 in the triple-grain and multiple-grain junctions and an amorphous bismuth-rich film in the ZnO/ZnO grain boundaries. The present investigation supports this suggestion for δ-Bi2O3 and also adds to the microstructural image and wetting properties of α-Bi2O3.  相似文献   

11.
Microstructure development in Bi0.5(Na0.5K0.5)0.5TiO3 prepared by a reactive-templated grain growth process was dependent on the sizes of platelike Bi4Ti3O12 (BiT) and equiaxed TiO2 particles used as starting materials. Calcined compacts were composed of large, platelike template grains and small, equiaxed matrix grains, the sizes of which were determined by those of the BiT and TiO2 particles, respectively. Texture was developed by the growth of template grains at the expense of matrix grains during sintering, and a new mechanism of grain growth was proposed on the basis of microstructure observation. The grain growth rate was determined by the template and matrix grain sizes, and a dense ceramic with extensive texture was obtained using small BiT and TiO2 particles.  相似文献   

12.
Bi2O3 was added to a nominal composition of Zn1.8SiO3.8 (ZS) ceramics to decrease their sintering temperature. When the Bi2O3 content was <8.0 mol%, a porous microstructure with Bi4(SiO4)3 and SiO2 second phases was developed in the specimen sintered at 885°C. However, when the Bi2O3 content exceeded 8.0 mol%, a liquid phase, which formed during sintering at temperatures below 900°C, assisted the densification of the ZS ceramics. Good microwave dielectric properties of Q × f =12,600 GHz, ɛr=7.6, and τf=−22 ppm/°C were obtained from the specimen with 8.0 mol% Bi2O3 sintered at 885°C for 2 h.  相似文献   

13.
Dolomite-type borate ceramics consisting of CaZrB2O6 were synthesized via a conventional solid-state reaction route; low-temperature sintering was explored using Bi2O3–CuO additives of 1–7 wt% for low-temperature co-fired ceramics applications. For several sintering temperatures, the microwave dielectric properties and chemical resistance of the ceramics were investigated. The CaZrB2O6 ceramics with 3 wt% Bi2O3–CuO addition could be sintered below 925°C, and the microwave dielectric properties of the low-temperature samples were ɛr=10.55, Q × f =87,350 GHz, and τf=+2 ppm/°C. The chemical resistance test result showed that both CaZrB2O6- and Bi2O3–CuO-added CaZrB2O6 ceramics were durable in basic solution but were degraded in acid solution.  相似文献   

14.
Undoped and La-doped Bi2Fe4O9 ceramics were synthesized using a soft chemical method. It is observed that in calcining La-doped Bi2Fe4O9, Bi(La)FeO3 phase rather than Bi2− x La x Fe4O9 gradually increases with increasing La doping content. The phase conversion from mullite-type structure of Bi2Fe4O9 to rhombohedrally distorted perovskite one of Bi(La)FeO3 with increasing La doping content indicates that La doping can stabilize the structure of BiFeO3. This is further evidenced that Bi2Fe4O9 can be directly converted to Bi(La)FeO3 by heating the mixtures of nominal composition of Bi2Fe4O9/ x La2O3. Furthermore, the microstructure changes and the room temperature hysteresis loops and leakage current for Bi2− x La x Fe4O9 with x =0 and 0.02 were characterized.  相似文献   

15.
Dielectric ceramics of Zr0.8Sn0.2TiO4 containing La2O3 and ZnO as sintering aids were prepared and investigated for microstructure and microwave dielectric properties. Low-level doping with La2O3 and ZnO (up to 0.30 wt%) is good for densification and dielectric properties. These additives do not affect the dielectric constant and the temperature coefficient. Dielectric losses increase significantly at additive levels higher than 0.15 wt%. The combined additives La2O3 and ZnO act as grain growth enhancers. With 0.15 wt% additives, a ceramic having a dielectric constant, a quality factor, and a temperature coefficient of frequency at 4.2 GHz of 37.6, 12 800, and –2.9 ppm/°C, respectively, was obtained. The quality factor was considerably improved by prolonged sintering.  相似文献   

16.
Effects of excess Bi2O3 content on formation of (Bi3.15Nd0.85)Ti3O12 (BNT) films deposited by RF sputtering were investigated. The microstructures and electrical properties of BNT thin films are strongly dependent on the excess Bi2O3 content and post-sputtering annealing temperature, as examined by XRD, SEM, and P – E hysteresis loops. A small amount of excess bismuth improves the crystallinity and therefore polarization of BNT films, while too much excess bismuth leads to a reduction in polarization and an increase in coercive field. P – E loops of well-established squareness were observed for the BNT films derived from a moderate amount of Bi2O3 excess (5 mol%), where a remanent polarization 2P r of 25.2 μC/cm2 and 2E c of 161.5 kV/cm were shown. A similar change in dielectric constant with increasing excess Bi2O3 content was also observed, with the highest dielectric constant of 304.1 being measured for the BNT film derived from 5 mol% excess Bi2O3.  相似文献   

17.
Phase relations in the system Bi2O3-WO3 were studied from 500° to 1100°C. Four intermediate phases, 7Bi2O3· WO3, 7Bi2O3· 2WO3, Bi2O3· WO3, and Bi2O3· 2WO3, were found. The 7B2O · WO3 phase is tetragonal with a 0= 5.52 Å and c 0= 17.39 Å and transforms to the fcc structure at 784°C; 7Bi2O3· 2WO3 has the fcc structure and forms an extensive range of solid solutions in the system. Both Bi2O3· WO3 and Bi2O3· 2WO3 are orthorhombic with (in Å) a 0= 5.45, b 0=5.46, c 0= 16.42 and a 0= 5.42, b 0= 5.41, c 0= 23.7, respectively. Two eutectic points and one peritectic exist in the system at, respectively, 905°± 3°C and 64 mol% WO3, 907°± 3°C and 70 mol% WO3, and 965°± 5°C and 10 mol% WO3.  相似文献   

18.
The subsolidus phase equilibria in the system Bi2O3-TiO2-Nb2O5 at 1100°C were determined by solid-state reaction techniques and X-ray powder diffraction methods. The system was found to contain 4 ternary compounds, i.e. Bi3TiNbO9, Bi7Ti4NbO21, a cubic pyrochlore solid solution having a compositional range of 3Bi2O3· x TiO2 (7– x )Nb2O5 where x ranges from 2.3 to 6.75, and an unidentified phase, 4Bi2O3·11TiO2·5Nb2O5.  相似文献   

19.
Our analysis of the microwave dielectric properties of the δ-Bi2O3–Nb2O5 solid solution (δ-BNss) showed a continuous increase in permittivity and dielectric losses with an increasing concentration of Nb2O5. The only discontinuity was found for the temperature coefficient of resonant frequency, which is negative throughout the entire homogeneity range but reaches a minimum value for the sample with 20 mol% Nb2O5. At the same composition there is a discontinuity in the grain size of the δ-BNss ceramics. For the sample containing 25 mol% Nb2O5 two structural modifications were observed. A single-phase tetragonal Bi3NbO7, in the literature referred to as a Type-III phase, is formed in a very narrow temperature range from 850° to 880°C. A synthesis performed below or above this temperature range resulted in the formation of the end member of the δ-BNss homogeneity range. Compared with the δ-BNss the Bi3NbO7 ceramics exhibit lower microwave dielectric losses, an increased conductivity, and a positive temperature coefficient of resonant frequency.  相似文献   

20.
In the system Bi2O3-SiO2-GeO2, good glasses can be formed only from limited compositional regions consisting of 2 narrow strips along the lines x Bi2O3-(100-:t) GeO2 ( x ≤40) and 40Bi2O3 y SiO2 (60- y )GeO2 (mol%); such glass is dark brown. Compositions from a large region (Bi2O3 content <40 mol%) showed immiscibility. In the binary system Bi2O3-GeO2, density and refractive index vary linearly with composition (mol%). Negative deviations of molar volume from ideality suggest that the coordination of a significant number of Ge ions is changing from 4-fold to 6-fold. Thermal expansion and electrical resistivity data are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号