首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, the tribological properties of traditional manganese phosphate coatings and composite hBN coatings

composed of nano-hexagonal boron nitride (hBN) in layered manganese phosphate crystals on AISI 1040 steel were investigated. Wear tests were carried out under controlled temperature and humidity using ball-on-disc tribometers for samples that were either submerged in oil or retaining oil on their surfaces at a sliding speed of 2.5 cm/s with loads of 1, 3, 5, and 10 N and sliding distances of 40, 80, 100, and 120 m. The surface profiles before and after the tests were used to characterize the wear. The surfaces of the coated samples were examined using scanning electron microscopy (SEM). The coefficients of friction and wear rates of the coated samples were also measured. The average wear rates of the composite hBN-coated samples were significantly lower than those of the traditional manganese phosphate–coated samples for each of the loading conditions for the oil submersion and retained oil tests. The coefficient of friction (COF) values for the traditional manganese phosphate–coated samples did not change significantly with increasing load. The COF values for the composite hBN coated–samples decreased with increasing load in the oil submersion test.  相似文献   

2.
In the current work, AISI 4140 steel was pack-boronized at 950°C for 3 h and gas-nitrided at 550°C for 72 h. All specimens used in this work were prepared from the same steel bar. A 3-µm-thick diamond-like carbon (DLC) coating (a-C:H) was deposited on the AISI D2 high-carbon, high-chromium, cold-worked tool steel by a plasma-assisted chemical vapor deposition technique. Normalized, boronized, and nitrided steel pins were tested against DLC-coated AISI D2 steel at various normal loads (15, 30, 60, and 80 N) for 1,000 and 3,000 m sliding distance in ambient air. Specific wear rate of all pins decreased with increasing load, and a similar trend was observed for the coefficient of friction (COF). Microscopic and energy-dispersive spectroscopic (EDS) analysis confirmed the role of the transfer layer for a low COF with increasing load. At all loads, the specific wear rate of boronized pins was lower than that of the nitrided and normalized pin specimens. Boronized pins showed a specific wear rate in the range of 0.27 × 10?8 to 0.44 × 10?8 mm3/Nm and the COF was about 0.1.  相似文献   

3.
In this investigation, the microstructural, mechanical and tribological properties of plasma and pulse plasma nitrided AISI 4140 steel have been investigated in comparison to hardened steel. The influence of nitriding case depth, as well as the presence of a compound layer, have been tribologically examined for both dry and lubricated sliding. Testing was carried out on a pin‐on‐disc machine in which surface‐treated pins were mated to hardened ball bearing steel discs. The surface treated samples were characterised using metallographic, SEM, microhardness and profilometric techniques, before and after wear testing. The resulting wear loss and coefficient of friction were monitored as a function of load and of test time. The results showed improved tribological properties of the AISI 4140 steel after plasma and pulse plasma nitriding as compared to the hardened steel, in both dry and lubricated sliding. However, the compound layer should be removed from the surface, either by mechanical means or by decreasing the amount of nitrogen in the nitriding atmosphere, in order to avoid impairment of the tribological properties by fracture of the hard and brittle compound layer, followed by formation of hard abrasive particles.  相似文献   

4.
Abstract

The aim of this research is to study the tribological behaviour of AISI 316L stainless steel for surgical implants (total hip prosthesis). The tribological behaviour is evaluated by wear tests, using tribometers ball on disc and sphere on plane. These tests consisted of measuring the weight loss and the friction coefficient of stainless steel (SS) AISI 316L. The oscillating friction and wear tests have been carried out in ambient air with an oscillating tribotester in accord with standards ISO 7148, ASTM G99-95a and ASTM G133-95 under different conditions of normal applied load (3, 6 and 10 N) and sliding speed (1, 15 and 25 mm s?1). A ball of 100Cr 6, 10 mm in diameter, is used as counter pairs. These tribological results are compared with those carried out with a tribometer type pin on disc under different conditions of normal load applied P (19·43, 28 and 44 N) and sliding speed (600 and 1020 rev min?1). The behaviour observed for both samples suggests that the wear and friction mechanism during the tests is the same, and to increase the resistance to wear and friction of biomedical SS AISI 316L alloy used in total hip prosthesis (femoral stems), surface coating and treatment are necessary.  相似文献   

5.
The Cu–Fe matrix continuous braking friction materials using SiC as abrasive were fabricated by powder metallurgy technique, and the effect of content and size of SiC were investigated. The tribological properties of friction materials sliding against AISI 1045 steel ring were carried out on a block-on-ring tester at different loads and sliding speeds. The strengthening effect of nano-SiC (55 nm) was superior to that of micro-SiC (70 μm) of the tribological properties for friction materials. The friction coefficients of friction materials increased with increasing nano-SiC content. However, the wear rates decreased with increasing nano-SiC content and then increased when the content of nano-SiC particle exceeded 10 wt%. The specimen contained 10% nano-SiC had the best tribological properties at different testing conditions.  相似文献   

6.
The tribological behavior of 30 vol% carbon fiber–reinforced polyetheretherketone (CFRPEEK) against AISI 431 steel under different temperatures of water lubrication was investigated. Friction and wear tests were carried out on a disc-on-disc contact test apparatus under different operating conditions. The results reveal that the lubricant temperature has a significant effect on the friction and wear properties of CFRPEEK sliding against AISI 431 steel. The average friction coefficient and wear rate of CFRPEEK increase with increasing lubricant temperature. However, the wear rate of AISI 431 steel did not have a positive correlation with the wear rate of CFRPEEK under different temperatures of water lubrication. Moreover, the original and worn surfaces of CFRPEEK and AISI 431 steel were imaged by environmental scanning electron microscopy and optical microscopy, respectively. The main tribological mechanisms of CFRPEEK sliding against AISI 431 steel were adhesive wear, and increasing the temperature of the lubricant could accelerate wear.  相似文献   

7.
The aim of this study was to evaluate the tribological behavior of polyethylene crosslinked by gamma radiation sliding against a steel surface. Two high-density polyethylenes were irradiated to a total dose in the range of 2?20 Mrad under vacuum and at room temperature. After irradiation, the materials were annealed at 423 K and then cooled slowly to room temperature. The same thermal treatment was applied to the non-irradiated polymer. The wear behavior of the polymers was determined under controlled ambient temperature of 298 and 333 K using a homemade tribometer. Sheet-shaped specimens were loaded against the surface of a steel disc with different normal loads to generate nominal contact pressures in the range of 0.25–1.5 MPa. The tests were performed under dry conditions using a disc rotation to produce an average sliding speed of 0.6 m/s and during a period of time to provide an average sliding distance of 1,080 m. The wear rate was obtained as the mass loss by the sample divided by the sliding distance, and the friction coefficient was determined by measuring the friction force. The results indicate that the wear rate increases with load in the case of non-irradiated polyethylene and low-dose irradiated polymers, while the wear rate reaches a maximum value with the load in the case of the irradiated samples with high doses. The samples irradiated with a dose of 10 Mrad showed the lowest wear. The coefficient of friction (COF) increases slightly with the load in all the cases. Most irradiated polymers show higher COF than the non-irradiated material when compared at a given load. The results show that the irradiation dose applied to the polyethylenes produced no noticeable effect on the COF values when a comparison was made at a given applied load.  相似文献   

8.
A suitable running-in process is advantageous for reducing friction. The aim of the present work was to study the influence of the running-in with acetylacetone on tribological performance of 4-Cyano-4’-pentylbiphenyl (5CB) liquid crystal. Friction tests were performed between steel surfaces in a ball-on-disk sliding system. After a running-in period of 240 s, the COF of 5CB was measured to be 0.013, which is about a quarter of the value (0.055) without running-in. The reduced contact pressure, caused in running-in process, does not directly lead to a drop in COF. The generation of tris(acetylacetonato) iron(III) induced by the tribochemical reactions between acetylacetone and steel surfaces, and the unique physical properties of liquid crystal are assumed to be reasons for the ultralow COF. Surface analysis was performed to correlate COF with the topography of wear surfaces. An evenly distributed specific grooved structure observed on wear area of the ball may have a beneficial effect on COF as well. We believe our findings can provide an effective and simple solution to reduce COF of liquid crystal between steel surfaces. A better understanding of the tribological behavior is needed for the development of this tribological system and for the possible future applications.  相似文献   

9.
The mechanical and tribological properties of pulse-magnetized and untreated AISI 1045 steel were studied comparatively. The microhardness and microstructures of treated and untreated steel samples were analyzed to evaluate magnetic treatment effects on the mechanical properties. Dislocation densities were calculated from X-ray diffraction data according to the Williamson-Hall method. Tribological tests were conducted using a ball-on-disk reciprocating friction and wear tester. Scanning electron and energy-dispersive microscopies were used to analyze the morphologies and elements of worn surfaces. Dislocation densities of AISI 1045 steel were found to increase by 16.5% after magnetic treatment. Treated steel performed better under polyalphaolefin (PAO) base oil lubrication with each of five additives, especially when oleic acid was 0.2 and 1.5% (by mass), and the wear scar width and friction coefficient of treated samples were 46.9 and 16.4% lower than those of the untreated samples, respectively. Morphological analyses indicated that micromagnetic fields generated during friction tests not only promoted oxidation of the worn surface and debris but also produced thinner tribofilms that included chemical and adsorbed films.  相似文献   

10.
The present contribution reports the tribological properties of Ni–WC composite coatings, electrodeposited on steel substrate. Commercial WC particles with an average size of 5 μm were codeposited with Ni on a mild steel substrate using a Watts bath at 50°C. The effect of plating variables on deposition behavior was studied. The amount of WC in the deposited layer decreased and plating efficiency increased with an increase in current density from 0.1 to 0.3 A/cm2. The tribological properties of the coatings were studied using a small amplitude reciprocating friction wear tester. The addition of WC in Ni increases the microhardness of the electrodeposited coatings. An important result is that the presence of embedded WC particles in the electrodeposited coatings results in a much lower coefficient of friction (COF) of 0.34, when compared with pure Ni (COF 0.62) and mild steel (COF 0.54).  相似文献   

11.
《Wear》2006,260(1-2):116-122
Wear and corrosive wear involve mechanical and chemical mechanisms and the combination of these mechanisms often results in significant mutual effects. In this paper, tribological behavior, X-ray peak broadening, and microstructure changes of carbon steel AISI 1045 and stainless steel AISI 304 samples under simultaneous wear and corrosion were investigated and the results were compared with those obtained from dry wear tests. 3.5 wt.% NaCl solution was used as the corrosion agent and a pin-on-disk tribometer was employed to perform wear and corrosive wear tests.X-ray diffraction measurements have shown that by increasing the applied load, the worn surfaces of carbon steel samples reached a constant strain at which fracture and wear occurred. Whereas in 304 stainless steel samples, by increasing the applied load, broadening of X-ray diffraction peaks was decreased.Wear tests of carbon steel and stainless steel samples have shown smaller weight losses and lower friction coefficient in the presence of corrosive environment. Study of worn surfaces suggested that depending on wear environment and applied load, different features of wear mechanisms were involved.  相似文献   

12.
Carbon/silicon carbide (C/SiC) composites were prepared by a liquid silicon infiltration (LSI) process and their microstructure and friction and wear properties studied. The matrices of the C/C green bodies were found to be reinforced with dense carbon fiber bundles hanging together. The density of the composites before and after the LSI process was 1.25 and 1.94 g/cm3, respectively. However, the open porosity of C/SiC composites was about 16% due to the opening of closed pores during the machining process. The C/SiC composites exhibited excellent tribological properties in the dry condition, with an average coefficient of friction (COF) and wear rate of about 0.29 and 16.15 μg/m MPa, respectively. In comparison, the average COF was about 0.13 in the moist condition, with a wear rate of 5.87 μg/m MPa. The main wear mechanism of the C/SiC composites was worn particles and debris with a high degree of hardness, producing a plough effect on the friction surface in the dry condition and an adhesive effect in the moist condition.  相似文献   

13.
This article deals with the rubber-based friction materials (RBFMs) which can be used in brake system. The physico-mechanical and tribological properties of a series of fiber filled RBFMs containing steel wool and aramid pulp at different concentrations along with a fiber-free reference material were characterized. Rubber–glass transition induced at higher sliding velocities was identified based on the friction fade behavior of the RBFMs. The rubber–glass transition which is inherently originated by viscoelastic response of polymeric binder was found to be influential on the tribological properties of the RBFMs. It was revealed that steel wool increased coefficient of friction (COF) and improved friction recovery behavior at low volume percent (7.5 vol.%) but it aggravated the COF at high concentration of steel wool (15 vol.%) and severe sliding conditions because of harsh abrasive mechanism. Aramid pulp improved the fade behavior at high sliding velocities and increased COF due to formation of sticky contact patches. It was revealed that steel wool increased the wear rate while aramid pulp did not affect the wear rate significantly, contrary to the increase in the friction coefficient of RBFM. SEM analysis was proved to be useful in correlating the wear rates of composites to the topographical changes on the worn surfaces.  相似文献   

14.
The current work aimed to determine the effect of p-toluene sulfonic acid (PTSA) in phenolic-based friction materials on mechanical and tribological properties. This study involved the use of phenolic resin as the binder, PTSA as the hardener, treated coconut coir whiskers as the reinforcing fiber, graphite particulates as dry lubricant, and granite fines as fillers. Synthesis was carried out by hot and cold setting techniques. In addition to hot set linings (HSLs) and cold set linings (CSLs), a lining without PTSA was fabricated for comparison. To analyze the mechanical response of the different compositions, tensile tests, compression tests, micro-Vicker's hardness tests, and density measurements were performed. Evaluation of the friction coefficients along with the wear rate was carried out using two-body sliding wear tests. The wear tests were carried out at loads of 5–15 N and speeds of 400–600 rpm. CSLs showed a coefficient of friction of 0.29 and average wear rate of 2.67 × 10?6 mm3/Nm and HSLs showed a coefficient of friction of 0.48 and average wear rate of 2.24 × 10?6 mm3/Nm. Optical microscopy and scanning electron microscopy (SEM) were used to study the microstructure of the friction linings and the wear morphology of the different linings was analyzed by SEM along with energy-dispersive spectroscopy (EDS) analysis.  相似文献   

15.
《Wear》2006,260(4-5):479-485
In the present work, industrial-scale DC-pulsed plasma nitriding for 20 h at 673 K was used to improve the wear resistance of an AISI 410 martensitic stainless steel. The tribological behaviour was studied and compared to the behaviour of the same steel in as-received condition.Pin-on-disc dry tests, using an alumina ball as counter-body, were carried out to determine the evolution of the friction coefficient. The wear resistance was investigated using an Amsler-disc-machine, employing a dry combined contact of rolling–sliding with three different applied loads. The wear mechanisms involved during rolling–sliding of unnitrided and plasma nitrided steels were investigated by microscopic observation of the surfaces, the corresponding cross-sections and the produced wear debris.The combination of different wear mechanisms taking place in the wear process of unnitrided and nitrided materials were discussed and analyzed. In contrast to the unnitrided steel, DC-pulsed plasma nitrided samples presented an improvement in the friction coefficient and the wear rate.  相似文献   

16.
In an attempt to collect information about the tribological performance of copper-based bearings, the friction and wear behaviors of C86300 manganese bronze were investigated. The characteristics of the base material were determined by structural and mechanical investigations. Then, dry sliding pin-on-disc wear tests were performed against an AISI 52100 steel counterface. After the wear tests, the worn surfaces of the pins and wear debris were studied by scanning electron microscopy and energy-dispersive X-ray spectroscopy. In addition, light optical microscopy and microhardness measurements were performed for examination of the steel counterfaces and worn pin subsurface layers. With increasing normal load, the wear rate of commercial C86300 alloy (containing 0.6 wt% Si) decreased initially and then began to increase. After reaching a maximum wear rate at the load of about 60 N, the wear rate decreased again with a further increase in the normal load. However, the wear rate of this C86300 alloy mainly decreased with increasing sliding speed. Adhesive and abrasive wear were the dominant wear mechanisms under the designed conditions.  相似文献   

17.
《Wear》2006,260(9-10):1013-1019
In this study wear behavior of cam spindles made of five different surface treated nodular cast iron (GGG50) and induction hardened CK45 steels was investigated. In the experiments; PVD–TiN-coated, both borided and PVD–TiN-coated, only hardened, both hardened and PVD–TiN-coated and only borided spherical graphite cast iron and induction hardened CK45 were used. The wear behavior of two type of steel was observed using cam wear mechanism under unlubricated and six different surface treatments. AISI 4140 steel was used for abrasive plate. The boronizing process was realized in a salt bath consisting of borax, boric acid and ferro-silicon at 900 °C for 6 h and appropriate boronizing heat treatment was carried out under atmospheric pressure. Borides, e.g. FeB, and Fe2B formed on ductile iron was verified by scanning electron microscope (SEM) and the distribution of alloying elements was detected by means of energy dispersive spectroscopy (EDS) from the surface to the interior. The weight loss amounts were determined as a function of sliding time and sliding velocity. In the result of the experiments; boriding and PVD–TiN coating were successfully applied to GGG50 spherical cast iron. These surface treatments increased the wear resistance of GGG50 material.  相似文献   

18.
This work analyzes the friction coefficients and the wear volumes obtained in probes made of AISI 420 stainless steel worn with AISI 52100 chrome steel balls under loads of 8, 18, and 30 N; the contact was lubricated with 1-ethyl-3-methylimidazolium ethyl sulfate or 1-ethyl-3-methylimidazolium hexyl sulfate. Under the two lowest loads, the results show that the higher the alkyl chain length in the sulfate anion, the greater the friction coefficient. In addition, an increase in the anion alkyl chain side length produces a decrease in the wear volume. However, under 30 N load the opposite tendencies are obtained for both properties. Both ionic liquids (ILs) show better tribological properties than two high-performance commercial oils of similar viscosities tested as a reference under the same conditions. X-ray photoelectron spectroscopy (XPS) analyses reveal the presence of tribofilms mainly composed of sulfates and oxides.  相似文献   

19.
Viking steel classified under AISI A8 cold working tool steel is widely used for heavy duty blanking and forming operations. The excellent combination of wear resistance and toughness make this material superior when compared to other tool steels in such applications. This cold working tool steel is easy to machine and gives excellent mechanical properties upon proper heat treatment. The heat treatment carried out with air and oil as quenching media at various conditions of temperature and time are discussed. Optical microscopy and hardness tests are performed on the heat-treated specimens. The samples with best results from each group are selected for further analysis. The tribological properties of these specimens are analysed with the help of wear tests conducted on pin on disc tribometer under different load and velocity levels. The data obtained from these experiments are used to find out the coefficient of friction and wear rate. The experimental results are used to develop wear mechanism maps with the help of K means clustering analysis and probabilistic neural networks. A novel approach based on clustering analysis is proposed as the analysis of wear data and wear mechanism maps are developed using with neural networks for tool steel. The data analysis is correlated with the scanning electron microscopic observations and the results are discussed.  相似文献   

20.
Metal matrix composites are now commonly used as braking pads for the train running over 250 km/h by virtue of a number of desirable properties. To develop a fundamental understanding of the stability of metallic composites at high-speed braking, four typical composite materials, with different Cu and Fe contents, were subjected to a series of high-speed emergency braking at a simulative running speed of 380 km/h and a braking inertia of 27 kg/m?2 and a normal pressure of 1.27 MPa in this paper. The results showed that the sample with higher Cu content displayed a fade COF and deteriorated wear, but the one with higher Fe content could maintain a stable COF and low wear rate. The tribological behaviour is associated with the relative rate of generation and consumption of the tribo-oxide film. For the sample with higher Cu content, the generation rate of tribo-oxide film was less than the consumption rate, and the COF fading and wear deterioration with the increasing braking times were attributed to the reduction in resistance to deform or to shear the asperities, which was thought to be caused by the degradation of near-surface layer due to the removal of protective tribo-oxide film. In contrast, for the sample with higher Fe content, the generation rate was approximately equal to the consumption rate, and a well-established tribo-oxide film on the surface was responsible for the stable friction level and low wear rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号