首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper proposes a new multiobjective evolutionary algorithm (MOEA) by extending the existing cat swarm optimization (CSO). It finds the nondominated solutions along the search process using the concept of Pareto dominance and uses an external archive for storing them. The performance of our proposed approach is demonstrated using standard test functions. A quantitative assessment of the proposed approach and the sensitivity test of different parameters is carried out using several performance metrics. The simulation results reveal that the proposed approach can be a better candidate for solving multiobjective problems (MOPs).  相似文献   

2.
In this paper we tackle a variant of the job shop scheduling problem with uncertain task durations modelled as fuzzy numbers. Our goal is to simultaneously minimise the schedule's fuzzy makespan and maximise its robustness. To this end, we consider two measures of solution robustness: a predictive one, prior to the schedule execution, and an empirical one, measured at execution. To optimise both the expected makespan and the predictive robustness of the fuzzy schedule we propose a multiobjective evolutionary algorithm combined with a novel dominance-based tabu search method. The resulting hybrid algorithm is then evaluated on existing benchmark instances, showing its good behaviour and the synergy between its components. The experimental results also serve to analyse the goodness of the predictive robustness measure, in terms of its correlation with simulations of the empirical measure.  相似文献   

3.
In this paper, we consider the problem of generating a well sampled discrete representation of the Pareto manifold or the Pareto front corresponding to the equilibrium points of a multi-objective optimization problem. We show how the introduction of simple additional constraints into a continuation procedure produces equispaced points in either of those two sets. Moreover, we describe in detail a novel algorithm for global continuation that requires two orders of magnitude less function evaluations than evolutionary algorithms commonly used to solve this problem. The performance of the methods is demonstrated on problems from the current literature.  相似文献   

4.
Multidisciplinary design optimization (MDO) is a concurrent engineering design tool for large-scale, complex systems design that can be affected through the optimal design of several smaller functional units or subsystems. Due to the multiobjective nature of most MDO problems, recent work has focused on formulating the MDO problem to resolve tradeoffs between multiple, conflicting objectives. In this paper, we describe the novel integration of linear physical programming within the collaborative optimization framework, which enables designers to formulate multiple system-level objectives in terms of physically meaningful parameters. The proposed formulation extends our previous multiobjective formulation of collaborative optimization, which uses goal programming at the system and subsystem levels to enable multiple objectives to be considered at both levels during optimization. The proposed framework is demonstrated using a racecar design example that consists of two subsystem level analyses — force and aerodynamics — and incorporates two system-level objectives: (1) minimize lap time and (2) maximize normalized weight distribution. The aerodynamics subsystem also seeks to minimize rearwheel downforce as a secondary objective. The racecar design example is presented in detail to provide a benchmark problem for other researchers. It is solved using the proposed formulation and compared against a traditional formulation without collaborative optimization or linear physical programming. The proposed framework capitalizes on the disciplinary organization encountered during large-scale systems design.  相似文献   

5.
Multi-criteria human resource allocation involves deciding how to divide human resource of limited availability among multiple demands in a way that optimizes current objectives. In this paper, we focus on multi-criteria human resource allocation for solving multistage combinatorial optimization problem. Hence we tackle this problem via a multistage decision-making model. A multistage decision-making model is similar to a complex problem solving, in which a suitable sequence of decisions is to be found. The task can be interpreted as a series of interactions between a decision maker and an outside world, at each stage of which some decisions are available and their immediate effect can be easily computed. Eventually, goals would be reached due to the found of optimized variables. In order to obtain a set of Pareto solutions efficiently, we propose a multiobjective hybrid genetic algorithm (mohGA) approach based on the multistage decision-making model for solving combinatorial optimization problems. According to the proposed method, we apply the mohGA to seek feasible solutions for all stages. The effectiveness of the proposed algorithm was validated by its application to an illustrative example dealing with multiobjective resource allocation problem.  相似文献   

6.
多目标混沌差分进化算法   总被引:11,自引:1,他引:11  
将差分进化算法用于多目标优化问题,提出了多目标混沌差分进化算法(CDEMO).该算法利用混沌序列初始化种群,并用混沌备用种群进行替换操作.该操作不仅起到了维持非劣最优解集均匀性的作用,而且增强了算法的搜索功能.对CDEMO的性能进行研究,数值实验结果表明了CDEMO的有效性.  相似文献   

7.
This paper describes the multiobjective topology optimization of continuum structures solved as a discrete optimization problem using a multiobjective genetic algorithm (GA) with proficient constraint handling. Crucial to the effectiveness of the methodology is the use of a morphological geometry representation that defines valid structural geometries that are inherently free from checkerboard patterns, disconnected segments, or poor connectivity. A graph- theoretic chromosome encoding, together with compatible reproduction operators, helps facilitate the transmission of topological/shape characteristics across generations in the evolutionary process. A multicriterion target-matching problem developed here is a novel test problem, where a predefined target geometry is the known optimum solution, and the good results obtained in solving this problem provide a convincing demonstration and a quantitative measure of how close to the true optimum the solutions achieved by GA methods can be. The methodology is then used to successfully design a path-generating compliant mechanism by solving a multicriterion structural topology optimization problem.  相似文献   

8.
In recent years, the application of metaheuristic techniques to solve multi‐objective optimization problems has become an active research area. Solving this kind of problems involves obtaining a set of Pareto‐optimal solutions in such a way that the corresponding Pareto front fulfils the requirements of convergence to the true Pareto front and uniform diversity. Most of the studies on metaheuristics for multi‐objective optimization are focused on Evolutionary Algorithms, and some of the state‐of‐the‐art techniques belong this class of algorithms. Our goal in this paper is to study open research lines related to metaheuristics but focusing on less explored areas to provide new perspectives to those researchers interested in multi‐objective optimization. In particular, we focus on non‐evolutionary metaheuristics, hybrid multi‐objective metaheuristics, parallel multi‐objective optimization and multi‐objective optimization under uncertainty. We analyze these issues and discuss open research lines.  相似文献   

9.
Robust optimization is a popular method to tackle uncertain optimization problems. However, traditional robust optimization can only find a single solution in one run which is not flexible enough for decision-makers to select a satisfying solution according to their preferences. Besides, traditional robust optimization often takes a large number of Monte Carlo simulations to get a numeric solution, which is quite time-consuming. To address these problems, this paper proposes a parallel double-level multiobjective evolutionary algorithm (PDL-MOEA). In PDL-MOEA, a single-objective uncertain optimization problem is translated into a bi-objective one by conserving the expectation and the variance as two objectives, so that the algorithm can provide decision-makers with a group of solutions with different stabilities. Further, a parallel evolutionary mechanism based on message passing interface (MPI) is proposed to parallel the algorithm. The parallel mechanism adopts a double-level design, i.e., global level and sub-problem level. The global level acts as a master, which maintains the global population information. At the sub-problem level, the optimization problem is decomposed into a set of sub-problems which can be solved in parallel, thus reducing the computation time. Experimental results show that PDL-MOEA generally outperforms several state-of-the-art serial/parallel MOEAs in terms of accuracy, efficiency, and scalability.  相似文献   

10.
In this paper, a metaheuristic inspired on the T-Cell model of the immune system (i.e., an artificial immune system) is introduced. The proposed approach (called DTC, for Dynamic T-Cell) is used to solve dynamic optimization problems, and is validated using test problems taken from the specialized literature on dynamic optimization. Results are compared with respect to artificial immune approaches representative of the state-of-the-art in the area. Some statistical analyses are also performed, in order to determine the sensitivity of the proposed approach to its parameters.  相似文献   

11.
A survey on metaheuristics for stochastic combinatorial optimization   总被引:2,自引:0,他引:2  
Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve complex optimization problems, and they are a growing research area since a few decades. In recent years, metaheuristics are emerging as successful alternatives to more classical approaches also for solving optimization problems that include in their mathematical formulation uncertain, stochastic, and dynamic information. In this paper metaheuristics such as Ant Colony Optimization, Evolutionary Computation, Simulated Annealing, Tabu Search and others are introduced, and their applications to the class of Stochastic Combinatorial Optimization Problems (SCOPs) is thoroughly reviewed. Issues common to all metaheuristics, open problems, and possible directions of research are proposed and discussed. In this survey, the reader familiar to metaheuristics finds also pointers to classical algorithmic approaches to optimization under uncertainty, and useful informations to start working on this problem domain, while the reader new to metaheuristics should find a good tutorial in those metaheuristics that are currently being applied to optimization under uncertainty, and motivations for interest in this field.
Leonora BianchiEmail:
  相似文献   

12.
In this paper, we present a novel immune multiobjective optimization algorithm based on micro-population, which adopts a novel adaptive mutation operator for local search and an efficient fine-grained selection operator for archive update. With the external archive for storing nondominated individuals, the population diversity can be well preserved using an efficient fine-grained selection procedure performed on the micro-population. The adaptive mutation operator is executed according to the fitness values, which promotes to use relatively large steps for boundary and less-crowded individuals in high probability. Therefore, the exploratory capabilities are enhanced. When comparing the proposed algorithm with a recently proposed immune multiobjective algorithm and a scatter search multiobjective algorithm in various benchmark functions, simulations show that the proposed algorithm not only improves convergence ability but also preserves population diversity adequately in most cases.  相似文献   

13.
In industrial applications, several objectives are often managed simultaneously (e.g., minimizing the cost and the weight of a mechanical structure satisfying some constraints). Although lots of optimization studies deal with only one objective, this approach is often not realistic for engineering optimization. Therefore, improvements in multiobjective optimization methods are required. This paper presents the formulation of a new utopia hyperplane that improves the proposal of the original normalized normal constraint method using two approaches: a redefinition of the anchor points and an exact linear transformation between the design objectives space and the normalized space. Both approaches always produce a normalized space with equal scales that improves the even distribution of the solutions over the Pareto frontier. Examples of the method proposed are presented related with mechanical engineering and structure design including a challenging non-convex Pareto frontier. Partially supported by FEDER DPI2005-07835, FEDER DPI2004-8383-C03-02 projects (MEC—Spain) and GV06/26 (Generalitat Valenciana)  相似文献   

14.
Storage or buffer capacities between successive machines in flowshop problems may be unlimited, limited or null. The last two cases can lead to blocking situations. In flowshop scheduling literature, many studies have been performed about classical flowshop problems and also about some problems with only one blocking situation between all machines.  相似文献   

15.
In the literature the fault-proneness of classes or methods has been used to devise strategies for reducing testing costs and efforts. In general, fault-proneness is predicted through a set of design metrics and, most recently, by using Machine Learning (ML) techniques. However, some ML techniques cannot deal with unbalanced data, characteristic very common of the fault datasets and, their produced results are not easily interpreted by most programmers and testers. Considering these facts, this paper introduces a novel fault-prediction approach based on Multiobjective Particle Swarm Optimization (MOPSO). Exploring Pareto dominance concepts, the approach generates a model composed by rules with specific properties. These rules can be used as an unordered classifier, and because of this, they are more intuitive and comprehensible. Two experiments were accomplished, considering, respectively, fault-proneness of classes and methods. The results show interesting relationships between the studied metrics and fault prediction. In addition to this, the performance of the introduced MOPSO approach is compared with other ML algorithms by using several measures including the area under the ROC curve, which is a relevant criterion to deal with unbalanced data.  相似文献   

16.
When attempting to solve multiobjective optimization problems (MOPs) using evolutionary algorithms, the Pareto genetic algorithm (GA) has now become a standard of sorts. After its introduction, this approach was further developed and led to many applications. All of these approaches are based on Pareto ranking and use the fitness sharing function to keep diversity. On the other hand, the scheme for solving MOPs presented by Nash introduced the notion of Nash equilibrium and aimed at solving MOPs that originated from evolutionary game theory and economics. Since the concept of Nash Equilibrium was introduced, game theorists have attempted to formalize aspects of the evolutionary equilibrium. Nash genetic algorithm (Nash GA) is the idea to bring together genetic algorithms and Nash strategy. The aim of this algorithm is to find the Nash equilibrium through the genetic process. Another central achievement of evolutionary game theory is the introduction of a method by which agents can play optimal strategies in the absence of rationality. Through the process of Darwinian selection, a population of agents can evolve to an evolutionary stable strategy (ESS). In this article, we find the ESS as a solution of MOPs using a coevolutionary algorithm based on evolutionary game theory. By applying newly designed coevolutionary algorithms to several MOPs, we can confirm that evolutionary game theory can be embodied by the coevolutionary algorithm and this coevolutionary algorithm can find optimal equilibrium points as solutions for an MOP. We also show the optimization performance of the co-evolutionary algorithm based on evolutionary game theory by applying this model to several MOPs and comparing the solutions with those of previous evolutionary optimization models. This work was presented, in part, at the 8th International Symposium on Artificial Life and Robotics, Oita, Japan, January 24#x2013;26, 2003.  相似文献   

17.
We present a numerical procedure for solving optimal control problems with both linear terminal constraints and multiple criteria. Using a Chebyshev spectral procedure, the problem reduces to a constrained optimization problem which can be solved using hybrid penalty partial quadratic interpolation (HPPQI) technique. The proposed procedure compares quite favorably with other methods on a sample of well-known examples.  相似文献   

18.
Optimal performance of vehicle occupant restraint system (ORS) requires an accurate assessment of occupant injury values including head, neck and chest responses, etc. To provide a feasible framework for incorporating occupant injury characteristics into the ORS design schemes, this paper presents a reliability-based robust approach for the development of the ORS. The uncertainties of design variables are addressed and the general formulations of reliable and robust design are given in the optimization process. The ORS optimization is a highly nonlinear and large scale problem. In order to save the computational cost, an optimal sampling strategy is applied to generate sample points at the stage of design of experiment (DOE). Further, to efficiently obtain a robust approximation, the support vector regression (SVR) is suggested to construct the surrogate model in the vehicle ORS design process. The multiobjective particle swarm optimization (MPSO) algorithm is used for obtaining the Pareto optimal set with emphasis on resolving conflicting requirements from some of the objectives and the Monte Carlo simulation (MCS) method is applied to perform the reliability and robustness analysis. The differences of three different Pareto fronts of the deterministic, reliable and robust multiobjective optimization designs are compared and analyzed in this study. Finally, the reliability-based robust optimization result is verified by using sled system test. The result shows that the proposed reliability-based robust optimization design is efficient in solving ORS design optimization problems.  相似文献   

19.
This paper presents an adaptive weighted sum (AWS) method for multiobjective optimization problems. The method extends the previously developed biobjective AWS method to problems with more than two objective functions. In the first phase, the usual weighted sum method is performed to approximate the Pareto surface quickly, and a mesh of Pareto front patches is identified. Each Pareto front patch is then refined by imposing additional equality constraints that connect the pseudonadir point and the expected Pareto optimal solutions on a piecewise planar hypersurface in the -dimensional objective space. It is demonstrated that the method produces a well-distributed Pareto front mesh for effective visualization, and that it finds solutions in nonconvex regions. Two numerical examples and a simple structural optimization problem are solved as case studies. Presented as paper AIAA-2004-4322 at the 10th AIAA-ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York, August 30–September 1, 2004  相似文献   

20.
One of the tasks of decision-making support systems is to develop methods that help the designer select a solution among a set of actions, e.g. by constructing a function expressing his/her preferences over a set of potential solutions. In this paper, a new method to solve multiobjective optimization (MOO) problems is developed in which the user’s information about his/her preferences is taken into account within the search process. Preference functions are built that reflect the decision-maker’s (DM) interests and use meaningful parameters for each objective. The preference functions convert these objective preferences into numbers. Next, a single objective is automatically built and no weight selection is performed. Problems found due to the multimodality nature of a generated single cost index are managed with Genetic Algorithms (GAs). Three examples are given to illustrate the effectiveness of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号