首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A complete solution is given for a fully or partially bridged straight crack in transversely isotropic elastic materials which may correspond to unidirectionally fiber-reinforced ceramics or other brittle composites. The stiffness of the bridging materials may have an arbitrary variation along the crack, representing partially failed fibers or ligaments. The crack may have any orientation with respect to the axis of the material symmetry. The solution is explicit in terms of the Chebychev polynomials when the bridging-forces are linearly dependent on the crack-opening-displacement. In addition, uniformly valid asymptotic solutions are developed for fully or partially bridging cracks. For the case when the crack is short relative to a length scale which depends on the material properties, the method yields a complete asymptotic solution when the bridging forces are linearly or non-linearly dependent on the crack-opening-displacement (a square-root dependence, corresponding to continuous fibers, is used for illustration). For the case of long cracks, the proposed asymptotic is effective, but the results are not presented in this work.The mechanism of crack kinking is studied for an oblique partially or fully bridged, or unbridged crack in a macroscopically transversely isotropic elastic solid. The crack is assumed to grow in the matrix material (containing unbroken strong fibers) under local driving forces which are calculated on the basis of the overall anisotropic material response. The results of various fracture criteria are studied. It is illustrated that, under far-field tensile forces normal to the crack, the criterion of the maximum opening mode stress intensity factor in the homogenized anisotropic solid (i.e., the orientation for which the strength of the singularity associated with the tensile hoop stress is maximum) produces results which suggest crack growth more or less parallel to the fibers, whereas the results based on the maximum Mode I stress intensity factor in the isotropic matrix material and/or on the local symmetry criterion (again, for the isotropic matrix) predict crack extension more or less normal to the reinforcing fibers.  相似文献   

2.
The transient elastodynamic response of a transversely isotropic material containing a semi-infinite crack under uniform impact loading on the faces is examined. The crack lies in a principle plane of the material, but the crack front does not coincide with a principle direction. Rather, the crack front is at an angle to a principle direction and thus the problem becomes more three-dimensional in nature. Three loading modes are considered, i.e., opening, in-plane shear and anti-plane shear. The solutions for the stress intensity factor history around the crack tip are found. Laplace and Fourier transforms together with the Wiener-Hopf technique are employed to solve the equations of motion directly. The asymptotic expression of stress near the crack tip leads to a closed-form solution for the dynamic stress intensity factor for each loading mode. It is found that the stress intensity factors are proportional to the square root of time as expected. Results given here converge to known solutions in transversely isotropic materials with a crack oriented along a principle direction and isotropic materials as special cases. The results of this analysis are used to find approximate strain energy release rates for dynamically loaded penny shaped cracks.  相似文献   

3.
The elastodynamic response of an infinite orthotropic material with a semi-infinite crack propagating at constant speed under the action of concentrated loads on the crack faces is examined. Solution for the stress intensity factor history around the crack tip is found for the loading modes I and II. Laplace and Fourier transforms along with the Wiener-Hopf technique are employed to solve the equations of motion. The asymptotic expression for the stress near the crack tip is analyzed which lead to a closed-form solution of the dynamic stress intensity factor. It is found that the stress intensity factor for the propagating crack is proportional to the stress intensity factor for a stationary crack by a factor similar to the universal function k(v) from the isotropic case. Results are presented for orthotropic materials as well as for the isotropic case.  相似文献   

4.
A crack emanating from the apex of an infinite wedge in an anisotropic material under antiplane shear is investigated. An isotropic wedge crack subjected to concentrated forces is first solved by using the conformal mapping technique. The solution of an anisotropic wedge crack is obtained from that of the transformed isotropic wedge crack based on a linear transformation method. Expressions for the stress intensity factor for the anisotropic wedge crack with both concentrated and distributed loads are derived. The stress intensity factors are numerically calculated for generally orthotropic wedge cracks with various crack and wedge angles as well as anisotropic parameters.  相似文献   

5.
A boundary integral procedure is obtained for examining the effect of a finite number of holes on the crack tip stress intensity factors for a plane crack in a homogeneous anisotropic elastic material. Numerical results for specific examples involving a transversely isotropic material are given.  相似文献   

6.
This paper addresses asymptotic full crack-tip fields for an anti-plane (Mode-III) stationary crack in an anisotropic functionally graded material. A monoclinic material that has a material symmetry plane is considered. The complex variable approach and the asymptotic analysis are used to solve a perturbed Laplace equation resulting from material anisotropy and gradation. The out-of-plane displacement and stress solutions are provided for a crack in exponentially and linearly graded anisotropic materials by considering material gradation either parallel or perpendicular to the crack. The characteristics of the asymptotic solutions in an anisotropic functionally graded material are compared with those for anisotropic homogeneous and isotropic graded materials. Finally, engineering significance of the present work is discussed.  相似文献   

7.
In this paper dynamic crack growth in an elastic-plastic material is analyzed under mode I plane strain small-scale yielding conditions using a finite element procedure. The main objective of this paper is to investigate the influence of anisotropic strain hardening on the material resistance to rapid crack growth. To this end, materials that obey an incremental plasticity theory with linear isotropic or kinematic hardening are considered. A detailed study of the near-tip stress and deformation fields is conducted for various crack speeds. The results demonstrate that kinematic hardening does not oppose the role of inertia in decreasing the plastic strains and stresses near the crack tip with increase in crack speed to the same extent as isotropic strain hardening. A ductile crack growth criterion based on the attainment of a critical crack opening displacement at a small micro-structural distance behind the tip is used to obtain the dependence of the theoretical dynamic fracture toughness with crack speed. It is found that for any given level of strain hardening, the dynamic fracture toughness displays a much more steep increase with crack speed over the quasi-static toughness for the kinematic hardening material as compared to the isotropic hardening case.  相似文献   

8.
The singular nature of the dynamic stress fields around an interface crack located between two dissimilar isotropic linearly viscoelastic bodies is studied. A harmonic load is imposed on the surfaces of the interface crack. The dynamic stress fields around the crack are obtained by solving a set of simultaneous singular integral equations in terms of the normal and tangent crack dislocation densities. The singularity of the dynamic stress fields near the crack tips is embodied in the fundamental solutions of the singular integral equations. The investigation of the fundamental solutions indicates that the singularity and oscillation indices of the stress fields are both dependent upon the material constants and the frequency of the harmonic load. This observation is different from the well-known −1/2 oscillating singularity for elastic bi-materials. The explanation for the differences between viscoelastic and elastic bi-materials can be given by the additional viscosity mismatch in the case of viscoelastic bi-materials. As an example, the standard linear solid model of a viscoelastic material is used. The effects of the frequency and the material constants (short-term modulus, long-term modulus and relaxation time) on the singularity and the oscillation indices are studied numerically.  相似文献   

9.
An analytic solution is given for a crack expanding with constant velocity from zero length in an anisotropic material under anti-plane strain. Not all anisotropic materials can support anti-plane strain, and the study is therefore by necessity limited to a certain class of materials, including monoclinic materials. A double Laplace transform is used and the inversion technique is based on the self-similarity of the problem. The result shows that the crack shape is elliptic, as in the corresponding isotropic case. The displacement on the crack plane outside the crack is found to be zero. Expressions are given for the stresses, the stress intensity factor and the energy flux into the crack edge. In contrast to the isotropic case a transverse normal stress may appear, singular at the crack edge. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Oblique edge cracks and kinked cracks in orthotropic materials with inclined principal material directions under inplane loadings are investigated. The Stroh formalism is modified by introducing new complex functions, which recovers a classical solution for a degenerate orthotropic material with multiple characteristic roots. An orthotropy rescaling technique is presented based on the modified Stroh formalism. Stress intensity factors for edge cracks as well as kinked cracks are obtained in terms of solutions for a material with cubic symmetry by applying the orthotropy rescaling method. Explicit expressions of the stress intensity factors for a degenerate orthotropic material are obtained in terms of solutions for an isotropic material. The effects of orthotropic parameter, material orientation, and crack angle on the stress intensity factors for the degenerate orthotropic material are discussed. The stress intensity factors for cubic symmetry materials are calculated from finite element analyses, which can be used to evaluate the stress intensity factors for orthotropic materials. The energy release rate for the kinked crack in an orthotropic material is also obtained.  相似文献   

11.
The 2D problem of a time-harmonic plane shear horizontal (SH) wave scattered by a finite closed crack in an isotropic material is presented in the paper. The crack is arbitrarily orientated with regard to the incident wave. A spring model based on the assumption that the traction components on the crack surfaces are linearly related to the crack opening displacement (COD) is used to model the closed crack. The problem is formulated in a set of boundary integral equations which contains the CODs as unknowns. Numerical examples are presented for the CODs, elastodynamic stress intensity factors, and the scattered displacement field for various parameters, such as spring stiffness, crack sizes and crack orientations. The results show that both the crack closure and orientation have significant effects on the scattered displacement field for the closed crack.  相似文献   

12.
13.
The minimum strain energy density theory, originally developed for crack growth in isotropic solids, is extended to the anisotropic case. The criterion for predicting the direction and onset of crack growth is reformulated through minimization of the ratio of the strain energy density (written as a function of the three stress intensity factors KI, KII and KIII) over the material critical strain energy density, assumed to have a polar variation in terms of four fracture toughnesses. Mixed models I–II and I–III crack growth are evaluated for solids with material symmetries.  相似文献   

14.
The stress intensity factor (SIF) is widely used for evaluating integrity of cracked components. Averaging the anisotropy of each crystal, the macroscopic behavior of polycrystalline materials is isotropic and homogenous in terms of elastic deformation. However, the anisotropic and/or inhomogeneous property influences on the stress field around a crack if the crack size is small in comparison with the grain. Thus, the SIF of the microstructurally small crack may differ from that in the isotropic body. In present study, the effect of anisotropic/inhomogeneous elasticity on the SIF is investigated by using the finite element analysis (FEA). At first, the SIFs of semi-circular crack in a single crystal and a polycrystalline material are calculated. These reveal that the magnitude of SIF is dependent not only on the crystal orientation but also on the deformation constraint by the neighboring crystals. Then, the statistical scatter of SIF due to the random orientation of crystal orientation in a polycrystal is examined by a Monte Carlo simulation.  相似文献   

15.
Equations are developed for predicting and sliding modes of crack growth along planes of geometric symmetry in viscoelastic orthotropic media with and without large prestrains. Except for the small failure zone at the crack-tip, the material is assumed to be linearly viscoelastic with respect to the changes in stress and strain which occur during crack propagation. For an orthotropic body in plane strain, an observation of Biot relating the Fourier transformed tractions and displacements on the surface of any homogeneous, elastic half-space is used in conjunction with Graham's extended correspondence principle to generate the viscoelastic crack face displacements. Application of a suitable energy criterion for failure leads to a nonlinear integro-differential equation for the crack tip speed in terms of material and loading parameters. The resulting equation is of the same generic form as in the previously published isotropic case except that the isotropic creep compliance is replaced by effective compliances formed from orthotropic moduli. Thus, just as in the isotropic case, a much simpler, approximate crack growth rate equation is deduced from the assumption that these effective compliances have small curvature when plotted logarithmically against logarithmic time. Included is a numerical example using constitutive properties of a fiber-reinforced plastic. Extension to fracture of prestrained media and crack growth between certain types of dissimilar media is then made. Again the growth equations have the same basic form, but for a prestrained medium the effective compliances involve the incremental moduli. The results indicate that crack growth is accelerated for initial stress states that create certain surface instabilities ahead of the crack tip. Finally, it is argued that these crack velocity relations can be employed in plane stress problems and in many three-dimensional cases, and, with a small change, can be used to predict the time of fracture initiation.  相似文献   

16.
In this paper, the axisymmetric elasticity problem of an infinitely long transversely isotropic solid cylinder imbedded in a transversely isotropic medium is considered. The cylinder contains an annular or a penny shaped crack subjected to uniform pressure on its surfaces. It is assumed that the cylinder is perfectly bonded to the medium. A singular integral equation of the first kind (whose unknown is the derivative of crack surface displacement) is derived by using Fourier and Hankel transforms. By performing an asymptotic analysis of the Fredholm kernel, the generalized Cauchy kernel associated with the case of `crack terminating at the interface' is derived. The stress singularity associated with this case is obtained. The singular integral equation is solved numerically for sample cases. Stress intensity factors are given for various crack geometries (internal annular and penny-shaped cracks, annular cracks and penny-shaped cracks terminating at the interface) for sample material pairs.  相似文献   

17.
In this paper the blast resistance of cracked steel structures repaired with fibre-reinforced polymer (FRP) composite patch are investigated. The switch box which has been subjected to blast loading is chosen to study. The steel material is modelled using isotropic hardening model, pertaining to Von Mises yield condition with isotropic strain hardening, and strain rate-dependent dynamic yield stress based on Cowper and Symonds model. Three different cracked structures are chosen to investigate their capability in dissipating the blast loading. To improve the blast resistance, the cracked steel structures are stiffened using carbon fibre-reinforced polymer (CFRP) composite patches. The repaired patches reduce the stress field around the crack as the stress is transferred from the cracked zone to them. This situation prevents the crack from growing and extends the service life of the steel structure. It will be shown that CFRP repairing can significantly increase the blast resistance of cracked steel structures.  相似文献   

18.
This paper presents a boundary element analysis of elliptical cracks in two joined transversely isotropic solids. The boundary element method is developed by incorporating the fundamental singular solution for a concentrated point load in a transversely isotropic bi-material solid of infinite space into the conventional displacement boundary integral equations. The multi-region method is used to analyze the crack problems. The traction-singular elements are employed to capture the singularity around the crack front. The values of stress intensity factors (SIFs) are obtained by using crack opening displacements. The results of the proposed method compare well with the existing exact solutions for an elliptical crack parallel to the isotropic plane of a transversely isotropic solid of infinite extent. Elliptical cracks perpendicular to the interface of transversely isotropic bi-material solids of either infinite extent or occupying a cubic region are further examined in detail. The crack surfaces are subject to the uniform normal tractions. The stress intensity factor values of the elliptical cracks of the two types are analyzed and compared. Numerical results have shown that the stress intensity factors are strongly affected by the anisotropy and the combination of the two joined solids.  相似文献   

19.
The Energy Release Rate (ERR) for the quasi-static problem of a semi-infinite mode I crack propagating through an inhomogeneous isotropic linearly viscoelastic body is examined. The shear modulus is assumed to have a power-law dependence on depth from the plane of the crack and a very general behavior in time. A Barenblatt type failure zone is introduced in order to cancel the singular stress and a formula for the ERR is derived which explicitly displays the combined influences of material viscoelasticity and inhomogeneity. The ERR is calculated for both power-law material and the standard linear solid and the qualitative features of the ERR are presented along with numerical illustrations.  相似文献   

20.
In this paper, the effects of T‐stress on steady, dynamic crack growth in an elastic–plastic material are examined using a modified boundary layer formulation. The analyses are carried out under mode I, plane strain conditions by employing a special finite element procedure based on moving crack tip coordinates. The material is assumed to obey the J2 flow theory of plasticity with isotropic power law hardening. The results show that the crack opening profile as well as the opening stress at a finite distance from the tip are strongly affected by the magnitude and sign of the T‐stress at any given crack speed. Further, it is found that the fracture toughness predicted by the analyses enhances significantly with negative T‐stress for both ductile and cleavage mode of crack growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号