首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fracture behavior of rigid polyurethane foams has been investigated and is shown to obey the Griffith criterion for fracture in so far as the predicted behavior of tensile strength on the size of artificially introduced cracks is concerned. The energy for crack propagation (fracture surface energy) has been measured as 91.4J/m2. From this result, the intrinsic flaw size of the material is calculated. This value was found to be within the range of cell dimensions of the material.  相似文献   

2.
The mechanical response of integral-skin rigid polyurethane foam, with an average density of 300 to 700 kg/m3, to constant rate and creep loading was determined. Sandwich specimens were modeled by layers of a core material and two skins, whose secant moduli had been determined experimentally by separate tests and approximated by linear functions of the density. The effective rigidities of the sandwich in tension and flexure were calculated and compared favorably to experimental measurements. The sandwich structure improved the flexural rigidity of homogeneous foam by a factor of more than 2.20. Tensile creep tests of sandwich specimens at relatively low stress levels (up to about 38 percent of their strength) showed that the creep was nonlinear, but a single creep curve could represent creep of specimens of various densities, provided the relative load on them was the same. A limited number of flexural creep tests led to similar conclusions, but the creep rate was smaller than in tension. Results from torsion tests of core material, compressive tests of sandwich specimens, and tension and compression tests of nonskin rigid foam are included in this article.  相似文献   

3.
Polyurethane consumption has been increasing in recent years, raising concerns about how to deal with the polymer waste. Post‐consumer rigid polyurethane foams or polyurethane foam scraps (PPU) ground into particles were utilized to strengthen mechanical properties of rigid polyurethane foam (PUF) and phenolic foam (PF). Viscosity of prepolymer with PUF was measured and PPU was well dispersed in prepolymer, as observed by optical microscope. Microstructures and morphologies of the reinforced foam were examined with scanning electron microscope (SEM) while cell diameter and density were measured by Scion Image software. Universal testing machine was employed to optimize compressive properties at various weight ratios of PPU. Both PUF and PF with 5 wt % PPU, respectively, exhibited considerable improvement in mechanical properties especially compressive property. The compressive modulus of PUF with 5 wt % PPU was 12.07 MPa, almost 20% higher than pure PUF while compressive strength of PF with 5 wt % PPU reached 0.48 MPa. The thermal stability of the reinforced foam was tested by thermal gravity analysis (TGA) and the result shows no obvious impact with PPU. The decomposition temperatures of PUF with PPU and PF with PPU were 280°C, because PPU has relatively weak thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39734.  相似文献   

4.
Density is an important parameter that influences the properties and performances of rigid polyurethane foam (PUF). Rigid PUF with different densities were prepared by varying the amount of distilled water as blowing agent. This investigation reports the mechanical, morphological, water absorption, thermal conductivity, and thermal behavior of rigid PUF varying with the density, which controls the foam architecture. The density of the PUF decreased from 116 to 42 kg/m3 with an increase in the amount of water from 0.1 to 3.0 parts per hundred polyol by weight (phr), respectively. It was found that the mechanical properties of the PUFs changed with the foam density. The results of water absorption of the PUFs showed that water absorption increased with decrease in density, due to increase in the cell size and decrease in the cell‐wall thickness. The thermal conductivity measurements showed that the thermal conductivity decreased with increase in density. It was due to the decrease in cell size. The thermal analysis of the PUFs shows that the glass transition temperature increases with the decrease in foam density, but the thermal stability decreases with the decrease in foam density. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
One‐step manufacturing process (in‐situ foaming) provide great potential for the production of foam core panels. Polyurethane (PU) foam showed good applicability for use for in‐situ foaming. Here, the effect of ingredient ratios of rigid PU foam on foam performance and panel properties is investigated. It was observed that the isocyanate (ISO) content and polyols (PO) type and content significantly change the foam and panel properties. Foam cell density, as the most important factor influencing the foam characteristics, was higher in foams with higher ISO and polyether content. Bending strength, internal bond and screw withdrawal resistance of the foam core panels were significantly enhanced when the ISO and polyether content was increased in the foam formulation. Varying the ISO content had no influence on panel properties with higher content of polyester (60%) in the PO blend. Varying the foam ingredient ratios did not change the thickness swelling, while the water absorption was dependent on the foam components ratios. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44722.  相似文献   

6.
The curing kinetics of a typical commercial formulation used in the manufacture of rigid polyurethane foams has been studied. The adiabatic temperature rise method was used, taking into account corrections for heat losses. A polymeric isocyanate was reacted with a stoichiometric amount of a polyether polyol, using dibutyltin dilaurate (DBTDL) as catalyst. For DBTDL < 2.6 mol m?3, a strong inhibition of the catalyst took place, and the uncatalysed reaction played a major role. Second order kinetics gave a good fit for the whole conversion range. For DBTDL > 2.6 mol m?3, the catalysed reaction took place. Second order kinetics were applicable up to the gel point, but then the rate slowed down severely. A first order dependence on the initial catalyst concentration was observed in the pre-gel region. The kinetics are discussed in terms of a modified version of the Van der Weij's mechanism. The heat of reaction was 17.6 kcal/NCO equivalent.  相似文献   

7.
硬质聚氨酯泡沫塑料研究进展   总被引:5,自引:0,他引:5  
介绍了合成硬质聚氨酯泡沫塑料的主要原料,包括主体成分和发泡剂、泡沫稳定剂等;对硬质聚氨酯泡沫塑料的物理性能,如力学性能、阻燃性能、老化性能等及其在工程上的应用情况进行了综述。  相似文献   

8.
采用一步法合成聚氨酯硬质泡沫塑料,考察了催化剂DABCO8154对聚氨酯塑料发泡体系的发泡时间、表观密度、热稳定性能、力学性能等的影响。随着DABCO8154用量的增加,发泡时间缩短,表观密度先下降后提高。压缩性能、弯曲性能随着DABCO8154含量增加逐渐降低。随着DABCO8154的加入,制品热稳定性提高。  相似文献   

9.
The reactions between polymeric diphenyl methane diisocyanate (polymeric MDI) and conventional polyols to produce foamed polyurethane products are well documented and published. Current polyurethane foams are predominantly produced from these reactions whereby the polyol components are usually obtained from petrochemical processes. This article describes a new development in polyurethane foam technology whereby a renewable source of polyol derived from refined–bleached–deodorized (RBD) palm oil is used to produce polyurethane foams. Using very basic foam formulation, rigid polyurethane foams were produced with carbon dioxide as the blowing agent generated from the reaction between excess polymeric MDI with water. The foams produced from this derivatized RBD palm oil have densities in excess of 200 kg/m3 and with compression strengths greater than 1 MPa. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 509–515, 1998  相似文献   

10.
Flexural stress relaxations were measured for rigid polyurethane foams (PUF) and glass-fiber-reinforced rigid polyurethane foams (FRU). The results were successfully analyzed in terms of the five element Maxwell model: (1) Samples reinforced with longer fibers exhibit reduced stress relaxation and reduced temperature dependency of stress relaxation; (2) The increased expansion ratio reduces the flexural modulus of both reinforced and non-reinforced materials, but the stress relaxation tends to increase greatly at the higher temperature for PUF, while not so greatly for FRU; (3) The temperature dependency of E1 decreases as longer fibers are used to reinforce the polyurethane. The dependency is minimal for the polyurethane reinforced with continuous fibers, where the reinforcing effect is maximal; and (4) The activation energy calculated from τ2 according to the Arrhenius plot is smaller for the longer fiber reinforced polyurethane foams.  相似文献   

11.
以环氧丙烷聚醚多元醇、苯酐聚酯多元醇、多苯基甲烷多异氰酸酯PM-200、发泡剂一氟二氯乙烷(HCFC-141b)、泡沫稳定剂硅油AK-8801等为主要原料,采用一步法合成了聚氨酯硬泡,考察了不同种类多元醇及其配比、发泡剂、泡沫稳定剂种类及用量等对聚氨酯硬泡抗压性能的影响。结果表明:高羟值、高官能度的环氧丙烷聚醚多元醇可提高泡沫的压缩强度,且当环氧丙烷聚醚多元醇4110为100份,并加入20份左右苯酐聚酯多元醇580及10份左右聚醚403,泡沫稳定剂用量1~2份,发泡剂水用量0.5~1份,HCFC-141b用量30~35份,催化剂用量0.5~1.5份时,所得聚氨酯硬泡性能较好。  相似文献   

12.
将中等羟值聚醚多元醇、低羟值聚醚多元醇、聚合物多元醇和苯酐聚酯多元醇分别与基础聚醚多元醇复配,制备了全水发泡硬质聚氨酯泡沫塑料,研究了4种不同组合多元醇对制品力学性能的影响,发现低羟值多元醇的加入使泡孔直径明显减小;过低羟值的TMN3050的加入对力学性能的提高不利;TMN700使泡沫体的压缩强度略为增加,冲击强度大幅提高,弯曲强度略为下降;聚合物多元醇TPOP36/28在低添加量下,制得硬泡泡孔直径明显减小,压缩强度和冲击强度大幅增加,弯曲强度降低;苯酐聚酯多元醇PS400A,使泡孔直径减小,制得硬泡的密度和力学性能大幅降低。  相似文献   

13.
Castor oil polyol (COP) having a hydroxyl number of 400?mg?KOH/g was prepared through the transesterification reaction of castor oil with glycerol. The effect of reaction temperature on the composition, hydroxyl number and viscosity of the COP products was studied. A series of rigid polyurethane foams were synthesised using the mixtures comprising COP and a petroleum-based polyol with various proportions as polyol component. It was found that the foaming rate, compressive strength and dimensional stability and morphology of resulting foams were dominated by the foam formulation, in a more accurate way, COP content in the polyol mixtures. The combination of expandable graphite and dimethyl methyl phosphonate exhibited stronger flame retardant function which was ascribed to the synergistic effect associated with the simultaneous presence of the two additives. An improvement in thermal stability was observed due to the inclusion of the flame retardants.  相似文献   

14.
Surface modification of fumed nanosilica was performed by using n‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane as a coupling agent. Then, modified nanosilica was utilized in the preparation of polyurethane rigid foam. The characterization and the study of properties were done by some techniques, such as Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, dynamic mechanical analysis, and thermomechanical analysis. Also, tensile test was examined to evaluate the static mechanical properties. With the increasing of modified nanosilica, thermal and static mechanical properties were enhanced, but dynamic mechanical behavior was different from static mechanical behavior because of the different properties of interfacial domain and bulk matrix. The presence of functional groups on the nanosilica surface affected stoichiometry and reduced hard phase formation in bulk polymer. The decrease in glass transition temperature (Tg) confirmed this statement. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

15.
The mechanical properties of hybrid reinforced rigid polyurethane (PU) foams were investigated with the reinforcing agent SiO2 and fibers. The effect of content of SiO2 and fibers and the effect of length of fibers on the properties of the PU composite foam were emphatically analyzed. The experiment results show that the tensile strength of the PU composite foam is optimal when the content of SiO2 and glass fiber is 20 and 7.8%, respectively. Furthermore, the reinforcing effect of glass fiber, Nylon‐66 fiber, and PAN‐matrix carbon fiber were compared and the results show that the tensile strength of the PU composite foam reinforced with 3–5% carbon fiber is optimal. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1493–1500, 2004  相似文献   

16.
A novel method for preparing rigid polyurethane (PU) foam/organoclay nanocomposites was developed through the direct incorporation of an organoclay into PU foam matrices without the addition of any physical or chemical blowing agent. The resultant foams with an appropriate content of the organoclay had a finer cell structure than the pristine PU foams because the organoclay not only acted as a nucleating agent as expected but also acted as a blowing agent of the PU foams; this could be attributed to the bound water between the interlayers of the organoclay. In addition, the incorporation of the organoclay up to 4 phr resulted in improvements in the tensile and compressive strengths, with the maximum values appearing at 2 phr (110 and 152%, respectively). The significant improvement in the mechanical properties could be attributed to the finer cell structure and the increased internal strength of the materials due to the higher degree of hydrogen bonding. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
以聚醚4110为主要原料,研究了阻燃聚酯(或聚醚)多元醇、反应型阻燃剂和添加型阻燃剂对聚氨酯硬质泡沫(RPUF)综合性能的影响。结果表明,阻燃多元醇、反应型阻燃剂的使用对RPUF阻燃性能都有一定的改善作用,添加型阻燃剂的引入则可大幅提高RPUF的阻燃性能,只是固体粉末阻燃剂的添加与阻燃多元醇和反应型阻燃剂相比对泡沫体的压缩强度影响较大。  相似文献   

18.
Rigid polyurethane foams were formed on rough zinc phosphate treated steel substrates. The interface between the two materials was investigated using knife peeling, immersion in a solvent which removes amorphous material predominantly, stud pull tests to observe bond failure, and X-ray scattering studies. There were three regions at the interface: an unbonded bare zinc phosphated surface, solid polyurethane areas where foaming did not occur, and foamed regions. These various interfacial regions result from temperature gradients during polymerization and foaming, and poor wetting of the substrate by the polymer. After immersion in a solvent, the solid polyurethane layer bonded to the substrate was completely removed, implying that this area only weakly adheres to the steel substrate. By contrast, the removal of the foamed area exhibited a well-ordered crystalline phase underneath polymer residues. In grazing angle X-ray scattering from the foamed region, a sharp peak from polyurethane crystallites was found on the shoulder of the amorphous peak; this reflection did not appear in the scans for unfoamed solid polymer areas. It is suggested that a greater number of these crystallites results in higher bond strength. A bond failure model was proposed in which fracture takes place along the non-connected regions, with cohesive failure in the foamed areas.  相似文献   

19.
Rigid, closed-cell, polyurethane foam consists of interconnected polyurethane plates that form cells. When this foam is compressed, it exhibits an initial elastic regime, which is followed by a plateau regime in which the load required to compress the foam remains nearly constant. In the plateau regime, cell walls are damaged and large permanent volume changes are generated. As additional load is applied, cell walls are compressed against neighboring cell walls, and the stiffness of the foam increases and approaches a value equal to that of solid poyurethane. When the foam is loaded in tension, the cell walls are damaged and the foam fractures. A constitutive theory for rigid polyurethane foam has been developed. This theory is based on a decomposition of the foam in two parts: a skeleton and a nonlinear elastic continuum in parallel. The skeleton accounts for the foam behavior in the elastic and plateau regimes and is described using a coupled plasticity with continuum damage theory. The nonlinear elastic continuum accounts for the lock-up of the foam due to internal gas pressure and cell wall interactions. This new constitutive theory has been implemented in both static and dynamic finite element codes. Numerical simulations performed using the new constitutive theory are presented.  相似文献   

20.
In this work, ceramic fillers zirconia and alumina powder were incorporated in the rigid polyurethane foams derived from modified castor oil and their impact on the mechanical, thermal, and fire performances of composite foams have been analyzed. It was observed that the addition of ceramic filler showed improved mechanical and thermal properties and best properties were shown by 6% zirconia with compressive strength of 6.61 MPa and flexural strength of 5.72 MPa. Zirconia also demonstrated an increase in T5% up to 260 °C. Cone calorimetry shows a decrease in peak of heat release from 118 to 84 kW m−2 and 94 kW m−2 by the incorporation of alumina and zirconia powder, respectively. Furthermore, total heat release (THR), smoke production rate (SPR), and total smoke release (TSR) were also found to decrease remarkably on the incorporation of ceramic fillers. So, these fillers have a great potential as an additive to incorporate good mechanical, thermal, and fire properties in bio-based rigid PU foams. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48250.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号