首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ITER in-wall shielding (IIS) is situated between the doubled shells of the ITER Vacuum Vessel (IVV). Its main functions are applied in shielding neutron, gamma-ray and toroidal field ripple reduction. The structure of IIS has been modelled according to the IVV design criteria which has been updated by the ITER team (IT). Static analysis and thermal expansion analysis were performed for the structure. Thermal-hydraulic analysis verified the heat removal capability and resulting temperature, pressure, and velocity changes in the coolant flow. Consequently, our design work is possibly suitable as a reference for IT's updated or final design in its next step.  相似文献   

2.
Doped graphite GBST1308, mechanically jointed to CuCrZr alloys, will be applied on EAST superconducting as plasma facing material (PFM). Two joint structures called joint-1 and joint-2 were evaluated by means of thermal response tests using electron beam facility. The experimental results showed that the temperature differences of two joints were not significant, and the maximum surface temperature was about 1055℃ at a load of 4 MW/m^2, which had a good agreement with the simulated results by ANSYS code. The results indicated that the doped graphite GBST1308/CuCrZr mock-up can withstand heat flux deposition of 4 MW/m^2 except at the screw-fastened region, and joint-2 could be more suitable to higher heat flux region such as divertor target. But under the higher heat flux, both joints are unacceptable, an advanced PFM and its integration with the heat sink have to be developed, for example, vacuum plasma spraying tungsten coatings on the CuCrZr might be a good choice.  相似文献   

3.
This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of selfadaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.  相似文献   

4.
To improve the limiting current interruption capability and minimizing vacuum interrupter with axial magnetic field (AMF) electrodes, it is significant to investigate the vacuum arc behaviours between the contacts. AMF distributions of the slot type electrodes were studied by both numerical analysis and experiments. Furthermore, the behaviours of vacuum arcs for different parameters of the slot type AMF electrodes were investigated by using high-speed CCD camera. The influences of gap distance, contact diameter and phase shift time between AMF and arc current on the vacuum arc were investigated. The results provide a reference for research and development of vacuum interrupters with slot type or other types of AMF electrode.  相似文献   

5.
The lower cryopump ports in International Thermonuclear Experimental Reactor (ITER) as a part of the vacuum vessel play many important roles. As the boundary of vacuum it must be ensured against structural damage. In this study a finite element model of the lower cryopump ports was developed by ANSYS code with a purpose to evaluate the stress and displacement level on it. Two kinds of loads were taken into account. One was the hydrostatic pressure including the normal operation pressure and test pressure. The other was the seismic load. The analysis results show that the peak stress does not exceed the allowable stress for either the hydrostatic pressure or the seismic load according to the ITER structural design criterion, which indicates that the structure has a good safety margin.  相似文献   

6.
The ITER (international thermonuclear experimental reactor) tractor is an in-cask remote handling equipment, its tilting and lifting mechanism is important for the tractor operated with forty-five-ton plug in front of the ports of Hot Cell and VV (vacuum vessel) successfully. In order to better analyse the movement of this mechanism and decide the key design parameters accurately, a mathematical model of 7-1ink complicated plane mechanism was built up, and the calculation of design and kinematics simulation were implemented. The established mathematical model was proved to be valid by comparing the calculated result with that of kinematics simulation. Finally, the structure analysis and the optimization of its key part, tilting and lifting frame, were performed to guarantee the frame's strength in bearing the heavy load of plug.  相似文献   

7.
Absolutely calibrated measurements of the neutron yields which need to cover both D-D and D-T phase of the international thermal-nuclear experimental reactor (ITER) are important for the evaluation of fusion power and fusion gain Q in D-D and D-T operations. This paper describes the in-situ calibration techniques and methods, the neutron sources including ^252Cf and neutron generator for calibration, the preliminary accuracy assessment and the error analyses. In addition, some difficult problems regarding the in situ calibration for the neutron flux monitor (NFM) on ITER are presented and discussed.  相似文献   

8.
To further investigate the fusion neutron source based on a gas dynamic trap (GDT), characteristics of the GDT were analyzed and physics analyses were made for a fusion neutron source based on the GDT concept. The prior design of a GDT-based fusion neutron source was optimized based on a refreshed understanding of GDT operation. A two-step progressive development route of a GDT-based fusion neutron source was suggested. Potential applications of GDT are discussed. Preliminary analyses show that a fusion neutron source based on the GDT concept is suitable for plasma-material interaction research, fusion material and subcomponent testing, and capable of driving a proof-of-principle fusion fission hybrid experimental facility.  相似文献   

9.
The finite element formulation for the multigroup neutron transport equation is utilized to solve both shielding and eigenvalue problems in one dimension. In particular the variational principles formulated by Ackroyd are used. Results obtained for a three-group constant source and a five-group eigenvalue problem show the accuracy and efficiency of the finite element method in comparison with the discrete ordinates finite difference method.  相似文献   

10.
两维快堆中子扩散方程的有限元逼近   总被引:1,自引:1,他引:1  
本文讨论了两维快堆中子扩散方程的有限元数值逼近方法,给出了收敛性证明,利用自动剖分技术编制了两维多群中子扩散方程有限元计算程序 FEM2D,对快堆临界问题进行了一系列数值计算,并与国外有限元计算结果及其它方法计算结果进行了分析比较,得到了满意的结论。  相似文献   

11.
Excellent vacuum performance ensures a high beam transmission efficiency of the neutral beam injector (NBI). The vacuum performance is mainly determined by the cryoperformance of the cryopanel of the cryocondensation pumps which are the main vacuum pumps of NBI. In order to optimize the cryoperformance, the requirements for the temperature distribution and the heat load of the cryopanel are analysed and the factors that affect the cryopanel's temperature distribution are studied. The results indicate that the temperature difference of the cryopanel can be reduced by fabricating the cryopanel with high thermal conductivity material, increasing its thickness and cutting the distance between the two upward cooling pipes. The results may be applied to a cryopanel cooled by forced flow liquid helium.  相似文献   

12.
Three tungsten coatings with a thickness of 250 μm, 600μm and 220 μm, respectively, were deposited on a CuCrZr substrate by the vacuum plasma spraying technology. In order to study the thermal performance of the coatings, heat load limit, thermal fatigue lifetime and thermal response tests were performed by means of the electron beam irradiation with a heat flux from 0 MW/m^2 to 10 MW/m^2. Experimental results indicated that tungsten coatings on CuCrZr with a titanium or tungsten/copper interlayer could expel heat flux timely and had good thermal fatigue properties, titanium was a promising compliant layer which provided a reliable way to join tungsten onto the CuCrZr heat sink, even suffering from a heat flux of 10 MW/m^2 or withstanding 54 cycles of fatigue tests under 5 MW/m^2. However, the better quality of tungsten coating itself was necessary because its surface temperature was higher than that of the sample with a tungsten/copper interlayer.  相似文献   

13.
The thermionic vacuum arc (TVA) is a new type of plasma source, which generates a pure metal and ceramic vapour plasma containing ions with a directed energy. TVA discharges can be ignited in high vacuum conditions between a heated cathode (electron gun) and an anode (tungsten crucible) containing the material. The accelerated electron beam, incident on the anode, heats the crucible, together with its contents, to a high temperature. After establishing a steadystate density of the evaporating anode material atoms, and when the voltage applied is high enough, a bright discharge is ignited between the electrodes. We generated silver and Al2O3 TVA discharges in order to compare the metal and ceramic TVA discharges. The electrical and optical characteristics of silver and Al2O3 TVA discharges were analysed. The TVA is also a new technique for the deposition of thin films. The film condenses on the sample from the plasma state of the vapour phase of the anode material, generated by a TVA. We deposited silver and Al2O3 thin films onto an aluminium substrate layer-by-layer using their TVA discharges, and produced micro and/or nano-layer Ag-Al2O3 composite samples. The composite samples using scanning electron microscopy was also analysed.  相似文献   

14.
Numerical simulations of 10 kW and 110 kW inductively coupled plasma (ICP) wind tunnels were carried out to study physical properties of the flow inside the ICP torch and vacuum chamber with air as tile working gas. Two-dimensional compressible axisymmetric Navier- Stokes (N-S) equations that took into account 11 species and 49 chemical reactions of air, were solved. A heat source model was used to describe the heating phenomenon instead of solving the electromagnetic equations. In the vacuum chamber, a four-temperature model was coupled with N-S equations. Numerical results for tile 10 kW ICP wind tunnel are presented and discussed in detail as a representative case. It was found that the plasma flow in the vacuum chamber tended to be in local thermoehemical equilibrium. To study the influence of operation conditions on the flow field, simulations were carried out for different chamber pressures and/or input powers. The computational results for the above two ICP wind tunnels were compared with corresponding experimental data. The computational and experimental results agree well, therefore the flow fields of ICP wind tunnels can be clearly understood.  相似文献   

15.
In this study, the influence of the initial jet angles (IJAs) and ion number densities (INDs) at the cathode side on the low current vacuum arc (LCVA) characteristics is simulated and analysed. The results show that the ion temperature, electron temperature, ion number density, axial current density and plasma pressure all decrease with the increase of the cathode IJAs. It is also shown that LCVA can cause a current constriction for lower cathode IND, and the anode sheath potential is more nonuniform, which is mainly related to the nonuniform distribution of the axial current density at the anode side.  相似文献   

16.
Based on a two-dimensional axisymmetric magneto-hydrodynamic (MHD) model, low current vacuum arc (LCVA) characteristics are studied. The influence of cathode process under different axial magnetic fields and different anode radii on LCVA characteristics is also simulated. The results show that the influence of both cathode process and anode radii on LCVA is significant. The sign of anode sheath potentials can change from negative to positive with the decrease of anode radii. The simulation results are in part verified by experimental results. Especially, as the effect of ion kinetic energy is considered, ion temperature is improved significantly; which is in agreement with experimental results.  相似文献   

17.
Because of 3He shortage, sintillator is a promising alternative choice for neutron detection in the field of thermal neutron scattering and imaging. Also, the neutron detection efficiency is difficult to be determined. In this paper, the efficiency for thermal neutron detection is presented by inorganic scintillator using probability principles, supposed that the material of scintillator is uniform in element distribution, and that attenuation length of scintillation light is longer than that of its thickness in the scintillator. The efficiencies for two pieces of lithium glass are determined by this method, indicating the method is useful for determining efficiency of thermal neutron detections.  相似文献   

18.
High Power Microwave Test System and Simulated Experiments for HT-7   总被引:2,自引:0,他引:2  
In lower hybrid current drive (LHCD) experiments in HT-7, LH wave coupled to the plasma from 12 klystrons is launched by a phased multi-junction grill. High power microwave reflection or arc, which threatens the klystrons, the wave-guide ceramic windows and the vacuum of the tokamak, occur sometimes during the experiments. For the sake of safety, a high power microwave test system to perform simulations was developed. In the test experiments, the klystron and window can be well protected with an optimized microwave monitor and a PIN switch. The layout of the test system and the simulated experiments for HT-7 are described in this paper.  相似文献   

19.
241Am-Be中子源被广泛用于实验研究,为保护实验人员免受中子及γ射线照射,需要设计适当的屏蔽。利用蒙特卡罗方法计算中子透射不同材料后的能谱分布与剂量,优选各层屏蔽材料种类与厚度,设计一套241Am-Be中子源紧凑型屏蔽装置。装置由内而外采用钨+聚乙烯+含硼聚乙烯+不锈钢进行防护,外表面周围剂量当量率H*(10)低于10μSv/h,满足辐射防护要求。同时对装置内部热中子、超热中子和快中子注量分布进行研究,确定装置快中子和热中子输出通道最佳位置。在辐照装置同时开放快中子和热中子通道进行实验测试时,需要设置距离大于130 cm的控制区,以保障操作人员安全。  相似文献   

20.
精确可靠的屏蔽设计是保证核装置安全性的重要组成部分,离散纵标法是应用最广泛的确定论屏蔽计算方法。对于角通量密度各向异性较强的屏蔽问题,求积组精度不足会导致离散误差较大,严重影响屏蔽计算的准确性与可靠性。本文结合间断有限元思想,构造正二十面体线性及二次间断有限元离散求积组,并优化求积组权重及方向保证权重严格非负。采用球谐函数数值积分及IRI-TUB基准题验证求积组的计算精度与适应性。数值结果表明,二十面体线性间断有限元离散求积组在1/20球面内能准确积分对应0阶和1阶球谐函数,且具有4阶收敛性;对于IRI-TUB基准题,反应率计算值与实验测量值的相对偏差小于25%。二十面体间断有限元离散求积组能适用于角通量密度各向异性较强的屏蔽问题,从而提高屏蔽计算的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号