首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In recent EAST experiments, current profile broadening characterized by reduced internal inductance has been achieved by utilizing radio-frequency current drives (RFCD). In contrast to previous density scan experiments, which showed an outward shift of the current density profile of lower hybrid current drive (LHCD) in higher plasma density, the core electron temperature (Te(0)) is found to affect the LHCD current profile as well. According to equilibrium reconstruction, a significant increase in on-axis safety factor (q0) from 2.05 to 3.41 is observed by careful arrangement of RFCD. Simulations using ray-tracing code GENRAY and Fokker–Planck code CQL3D have been performed to thoroughly analyze the LHCD current profile, revealing the sensitivity of the LHCD current profile to Te(0). The LHCD current density tends to accumulate in the plasma core with higher current drive efficiency benefiting from higher Te(0). With a lower Te(0), the LHCD current profile broadens due to off-axis deposition of power density. The sensitivity of the power deposition and current profile of LHCD to Te(0) provides a promising way to effectively optimize current profile via control of the core electron temperature.  相似文献   

2.
3.
Based on the electron‘s radial force equilibrium, the profiles of radial electric field in OH and LHCD phase are calculated by using a simulation code. The dependences of radial electron field on electron density and its profile and different current ratio, Irf/Ip, are given. The connections between the improvement of plasma confinement and the modified radial electric field by LHCD are discussed by comparing the calculated results with the experimental results.  相似文献   

4.
An electromagnetic calculation and the parameters of the magnet system of the magnetically confined plasma rocket were established. By using ANSYS code, it was found that the leakage rate depends on the current intensity of the magnet and the change of the magnet position.  相似文献   

5.
The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed. The change of the surface property over time, in comparison with low pressure oxygen (O2) plasma treatment, is examined. As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement. However, when the atmospheric pressure plasma was used for PP(polypropylene), it produced remarkable hydrophilic effects.  相似文献   

6.
Doped graphite GBST1308, mechanically jointed to CuCrZr alloys, will be applied on EAST superconducting as plasma facing material (PFM). Two joint structures called joint-1 and joint-2 were evaluated by means of thermal response tests using electron beam facility. The experimental results showed that the temperature differences of two joints were not significant, and the maximum surface temperature was about 1055℃ at a load of 4 MW/m^2, which had a good agreement with the simulated results by ANSYS code. The results indicated that the doped graphite GBST1308/CuCrZr mock-up can withstand heat flux deposition of 4 MW/m^2 except at the screw-fastened region, and joint-2 could be more suitable to higher heat flux region such as divertor target. But under the higher heat flux, both joints are unacceptable, an advanced PFM and its integration with the heat sink have to be developed, for example, vacuum plasma spraying tungsten coatings on the CuCrZr might be a good choice.  相似文献   

7.
CrN films have been synthesized on Si(100) wafer by inductively coupled plasma (ICP)-enhanced radio frequency (RF) magnetron sputtering. The effects of ICP power on microstructure, crystal orientation, nanohardness and stress of the CrN films have been investigated. With the increase of ICP power, the current density at substrate increases and the films exhibit denser structure, while the DC self-bias of target and the deposition rate of films decrease. The films change from crystal structure to amorphous structure with the increase of ICP power. The measured nanohardness and the compressive stress of films reach the topmost at ICP power of 150 W and 200 W, respectively. The mechanical properties of films show strong dependence on the crystalline structure and the density influenced by the ICP power.  相似文献   

8.
ZrN fihns were deposited on Si(111) and M2 steel by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effect of ICP power on the microstructure, mechanical properties and corrosion resistance of ZrN films was investigated. When the ICP power is below 300 W, the ZrN films show a columnar structure. With the increase of ICP power, the texture coefficient (To) of the (111) plane, the nanohardness and elastic modulus of the films increase and reach the maximum at a power of 300 W. As the ICP Power exceeds 300 W, the films exhibit a ZrN and ZrNx mixed crystal structure without columnar grain while the nanohardness and elastic modulus of the films decrease. All the ZrN coated samples show a higher corrosion resistance than that of the bare M2 steel substrate in 3.5% NaCl electrolyte. The nanohardness and elastic modulus mostly depend on the crystalline structure and Tc of ZrN(111).  相似文献   

9.
Maintaining plasma current under steady state conditions is one of the most important pre-requisites for a tokamak-based reactor. Lower hybrid current drive (LHCD) system aims to drive tokamak plasma current by means of RF power. The LHCD system on SST-1 tokamak is based on two 500 kW, CW klystrons operating at 3.7 GHz. A waveguide transmission line transmits power from source to the antenna. A phased array waveguide antenna is used to couple power to the plasma. The antenna side of the transmission line is placed inside the tokamak vacuum vessel. The design and fabrication of this In-Vessel system has to satisfy the demands of high power RF as well as ultra high vacuum (UHV) compatibility. This paper describes some of the critical UHV compatible In-Vessel RF devices, their design, fabrication, and test results.  相似文献   

10.
The sterilizing effect of the non-equilibrium atmospheric pressure plasma jet by applying it to the Bacillus subtilis spores is invesigated. A stable glow discharge in argon or helium gas fed with active gas (oxygen), was generated in the coaxial cylindrical reactor powered by the radio-frequency power supply at atmospheric pressure. The experimental results indicated that the efficiency of killing spores by making use of an Ar/O2 plasma jet was much better than with a He/O2 plasma jet. The decimal reduction value of Ar/O2 and He/O2 plasma jets under the same experimental conditions was 4.5 seconds and 125 seconds, respectively. It was found that there exists an optimum oxygen concentration for a certain input power, at which the sterilization efficiency reaches a maximum value. It is believed that the oxygen radicals are generated most efficiently under this optimum condition.  相似文献   

11.
Temperature and Nitric Oxide Generation in a Pulsed Arc Discharge Plasma   总被引:1,自引:0,他引:1  
Nitric oxide (NO) is increasingly being used in medical treatments of high blood pressure, acute respiratory distress syndrome and other illnesses related to the lungs. Currently a NO inhalation system consists of a gas cylinder of N2 mixed with a high concentration of NO. This arrangement is potentially risky due to the possibility of an accidental leak of NO from the cylinder. The presence of NO in the air leads to the formation of nitric dioxide (NO2), which is toxic to the lungs. Therefore, an on-site generator of NO would be highly desirable for medical doctors to use with patients with lung disease.
To develop the NO inhalation system without a gas cylinder, which would include a high concentration of NO, NAMIHIRA et al have recently reported on the production of NO from room air using a pulsed arc discharge. In the present work, the temperature of the pulsed arc discharge plasma used to generate NO was measured to optimize the discharge condition. The results of the temperature measurements showed the temperature of the pulsed arc discharge plasma reached about 10,000 K immediately after discharge initiation and gradually decreased over tens of microseconds. In addition, it was found that NO was formed in a discharge plasma having temperatures higher than 9,000 K and a smaller input energy into the discharge plasma generates NO more efficiently than a larger one.  相似文献   

12.
The effect of a high frequency (HF) electric field on the propagation of electrostatic wave in a 2D non-uniform relativistic plasma waveguide is investigated. A variable separation method is applied to the two-fluid plasma model. An analytical study of the reflection of electrostatic wave propagation along a magnetized non-uniform relativistic plasma slab subjected to an intense HF electric field is presented and compared with the case of a non relativistic plasma. It is found that, when the frequency of the incident wave is close to the relativistic electron plasma frequency, the plasma is less reflective due to the presence of both an HF field and the effect of relativistic electrons. On the other hand, for a low-frequency incident wave the reflection coefficient is directly proportional to the amplitude of the HF field. Also, it is shown that the relativistic electron plasma leads to a decrease in the value of reflection coefficient in comparison with the case of the non relativistic plasma.  相似文献   

13.
EAST has demonstrated its capability of long pulse operation using RF heating(LHCD and ICRF)in past experiments.One key issue to realize the long pulse H-mode experiments is to sustain the plasma current for steady state operation.Based on the calculations of the transport code ONETWO and its coupled RF code GENRAY,two scenarios have been proposed to achieve the 10 s H-mode plasma with Ip=400 kA,  相似文献   

14.
Physical engineering capability on the superconducting magnetic system of EAST was tested and first divertor plasma configuration in EAST was obtained. The extrapolation of the safety limit has verified the reliability of the system for long pulse operation. A stably controlled diverted plasmas configuration with an elongation n in excess of 1.8 and plasma current of up to 500 kA, by using the (copper) internal coils to control the vertical displacement instability was obtained by an optimized plasma control algorithm. Highly shaped plasma at various configurations, which almost covers all designed configurations for EAST, was generated stably. A number of operational issues, such as plasma initiation, ramp up and configuration control with constraints of superconducting coils, were successfully investigated. All of the results obtained proved both the capability of the superconducting poloidal magnets for operation under steady-state condition and effectiveness of the plasma control algorithm for EAST.  相似文献   

15.
The organic compounds of p-nitrophenol (PNP) solution was treated by the active species generated in a stirred reactor by an atmospheric pressure plasma jet (APPJ). The emission intensities of hydroxyl (OH), oxygen (O), nitric oxide (NO), hydrogen (H) and molecular (N2) were measured by optical emission spectroscopy (OES). The relations between the flow rates of the PNP solution and degradation, the degradation effects and initial pH value of the solution were also investigated. Experimental results show that there exist intense emissions of O (777.1 nm), N(337.1 nm), OH (306-310 nm) and NO band (200-290 nm) in the region of plasma. Given the treatment time and gas flow rate, the degradation increased as a function of discharge energy and solution flow rate, respectively. The solution flow rate for the most efficient degradation ranged from 1.414 m/s to 1.702 m/s, and contributed very little when it exceeded 2.199 m/s. This indicates the existence of diffusion-controlled reactions at a low solution flow rate and activation- controlled reactions at a high solution flow rate. Moreover, increasing or decreasing the initial pH value of neutral PNP solution (pH=5.95) could improve the degradation efficiency. Treated by APPJ, the PNP solutions with different initial pH values of 5.95, 7.47 and 2.78 turned more acidic in the end, while the neutral solution had the lowest degradation efficiency. This work clearly demonstrates the close coupling of active species, photolysis of ultraviolet, the organic solution flow rate and the initial pH value, and thus is helpful in the study of the mechanism and application of plasma in wastewater treatment.  相似文献   

16.
This study investigated the effect of cold helium plasma treatment on seed germina- tion, growth and yield of wheat. The effects of different power of cold plasma on the germination of treated wheat seeds were studied. We found that the treatment of 80 W could significantly improve seed germination potential (6.0%) and germination rate (6.7%) compared to the control group. Field experiments were carried out for wheat seeds treated with 80 W cold plasma. Com- pared with the control, plant height (20.3%), root length (9.0%) and fresh weight (21.8%) were improved significantly at seedling stage. At booting stage, plant height, root length, fresh weight, stem diameter, leaf area and leaf thickness of the treated plant were respectively increased by 21.8%, 11.0%, 7.0%, 9.0%, 13.0% and 25.5%. At the same time, the chlorophyll content (9.8%), nitrogen (10.0%) and moisture content (10.0%) were higher than those of the control, indicating that cold plasma treatment could promote the growth of wheat. The yield of treated wheat was 7.55 t-ha-1, 5.89% more than that of the control. Therefore, our results show that cold plasma has important application prospects for increasing wheat yield.  相似文献   

17.
Parametrical effect on plasma discharge and beam extraction in the diagnosis neutral beam (DNB) system for HT-7 tokamak was studied experimentally. Useful results with an improved beam quality were obtained.  相似文献   

18.
To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire- to-cylinder reactor were 1.02×10^-9 mol/L and 0.61×10^-9 mol/L, respectively. In the point-to- plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7×10^-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5×10^-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p- benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were elucidated in light of the ana  相似文献   

19.
The stainless steel (SS) first mirror pre-exposed in the deposition-dominated envi- ronment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The deposition layer on the FM surface formed during the exposure was successfully removed by argon plasma with a RF power of about 80 W and a gas pressure of 0.087 Pa for 30 min. The total reflectivity of the mirrors was recovered up to 90% in the wavelength range of 300-800 nm, while the diffuse reflectivity showed a little increase, which was attributed to the increase of surface roughness in sputtering, and residual contaminants. The FMs made from single crystal materials could help to achieve a desired recovery of specular reflectivity in the future.  相似文献   

20.
A mass of nanoparticles/nanorods were formed on a simultaneously deposited gran- ular film by plasma enhanced chemical vapor deposition (PECVD) of perfluorohexane at atmo- spheric pressure without any catalysts or templates. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and the chem- ical compositions of nanoparticles. The average size of particles is about 100 nm and the length of synthesized nanorods is between 1 μm and 2.5/tm. The analyses of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction(SAED) and X-ray diffraction (XRD) reveals that the nanoparticles and nanorods are crystalline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号