首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
介绍了一种新型的光纤Bragg光栅微型压力传感器,这种压力传感器采用特殊的结构将作用在光纤横向的压力转换成沿光纤轴向的张力,从而实现对光纤横向压力的高灵敏度测量,传感器对横向压力的灵敏度可达到-4.55×10-3/MPa,比国外同类研究成果高出3个数量级。同时,该微型压力传感器的横向尺寸可做到几百个微米,因此,可以置于很小的空间中对压力进行测量,在工业和军事领域具有广泛的应用前景。  相似文献   

2.
全金属封装光纤光栅的温度传感特性研究   总被引:2,自引:0,他引:2  
针对利用聚合物作为衬底材料或胶粘剂进行封装的光纤Bragg光栅(FBG)传感器在长期使用过程中出现的老化、蠕变等问题,考虑采用熔点较低的锡焊完成了1529.0 nm FBG的全金属封装;利用水浴加热的方法在19~60℃的温度范围内,测得经封装后的FBG的温度灵敏度为34.0 pm/℃,是封装前的3.3倍,且有较好的重复性.  相似文献   

3.
光纤Bragg 光栅的温度传感研究􀀁   总被引:2,自引:0,他引:2  
本文分析了光纤 Bragg光栅在受到温度调制时的滤波特性。与温度对光纤光栅反射谱波长的影响相比 ,对其带宽的影响可忽略。实验中 ,光纤光栅受温度的调制 ,并且其反射谱由光谱仪记录。结果表明该光纤 Bragg光栅对温度产生的波长偏移是 0 .0 0 991nm/℃。值得注意的是实验中最大标准误差为 0 .0 3nm,能满足目前波分复用技术所需的信道精度。  相似文献   

4.
基于平面膜片的高灵敏度光纤Bragg光栅压力传感器   总被引:4,自引:0,他引:4  
提出了一种新颖的利用粘贴于平面圆形膜片环向上的光纤Bragg光栅来实现压力传感测量的高灵敏度压力传感器。推导了该传感器波长与压力之间的关系,得到了该传感器的压力响应灵敏度的解析表达式。从实验上获得了-4.8549fm/Pa的压力响应灵敏度,是裸光纤Bragg光栅压力响应灵敏度的1618.3倍。该传感器的压力响应具有很好的线性。同时指出,该传感器的压力响应灵敏度随着膜片的大小、材料的力学参量、光纤Bragg光栅粘贴位置的改变而改变。  相似文献   

5.
光纤Bragg 光栅传感技术及其应用   总被引:3,自引:0,他引:3  
阐述了光纤Bragg光栅传感器的基本工作原理、波长移动解调技术 ,概述了其近年来在复合材料及混凝土结构状态检测、电力工业以及能源化工等领域的实际应用情况 ,并分析了其发展前景 .  相似文献   

6.
沥青路面动水压力光纤传感测量研究   总被引:1,自引:0,他引:1  
基于光纤Bragg光栅(FBG)传感原理,设计了一种动水压力光纤传感器,介绍了其压力传感原理,并推导了该传感器波长漂移与压力之间的关系。通过室内试验,对动水压力光纤传感器进行了标定,传感器的压力灵敏度为6.0255nm/MPa。现场测量试验表明:在车辆以20-80km/h的速度行驶时,动水压力作用时间在0.04—0.016S。随着车速增加,动水压力存在时间越短。动水压力数值随着车速的增大而增加,车速为20km/h时,动水压力为0.085MPa;80km/h时,动水压力达到0.234MPa。  相似文献   

7.
光纤Bragg光栅传感器及其应用   总被引:3,自引:0,他引:3  
基于光纤B ragg光栅(FBG)特点及传感原理,将其应用在电气设备的绝缘故障检测中。电气设备的绝缘故障发生之前,通常伴随热传递,而FBG对温度非常敏感,因而,可以通过FBG传感器监测温度来确定电气设备是否有绝缘故障发生。试验结果显示:FBG抗干扰能力强,可在恶劣环境下工作,且温度分辨力为0.1℃,能够得到较传统传感器更好的效果。介绍了一种通过监测温度来检测高压设备故障的方法,阐述了高压设备故障在线监测系统的功能和应用。  相似文献   

8.
温度自补偿型光纤Bragg光栅土压力传感器设计   总被引:1,自引:0,他引:1  
针对传统土压力传感器长期稳定性差、抗电磁干扰能力不强以及组网难度大等问题,根据传感器与土介质的匹配原则,设计了一种光纤Bragg光栅(FBG)温度自补偿土压力传感器,可实现温度和土压力2个参量的同时测量.对传感器灵敏度系数、匹配性等参数进行了理论分析计算.根据分析结果,加工封装传感器并对其进行了压力校准和温度自补偿性能实验.实验表明:传感器的输出波长分别与温度和土压力均呈线性关系,压力灵敏度系数为272.19 pm/MPa,输出分辨率为0.36%,线性相关度为99.989%;温度灵敏度系数为21.16 pm/℃,线性相关度99.998%,在0~40℃范围内具有良好的温度自补偿能力,其性能参数符合工程应用要求.  相似文献   

9.
由于光纤光栅Bragg波长对温度与应变均敏感,它本身无法区别温度和应变引起的波长变化,导致温度和应变的交叉敏感问题制约其发展。因此,在用光纤Bragg光栅传感器进行应变测量中,必须采取措施进行温度补偿。该文介绍了几种温度补偿方法及其工作原理和特点,并举实例说明其具体实施方法。  相似文献   

10.
具有温度补偿的膜片型光纤光栅温度压力传感器   总被引:4,自引:0,他引:4  
阐述了具有温度补偿结构的膜片型光纤光栅温度压力传感器。传感器以弹性膜片为感压元件,在压力作用下产生轴向位移来压缩压力敏感光栅以实现压力传感;通过结构温度补偿消除压力敏感光栅的温度漂移,同时串入感温光栅进行实时修正并实现温度测量。对传感器的压力和温度特性进行了测量。试验结果表明:压力灵敏度为528 pm/MPa,温度灵敏度为8 pm/℃。  相似文献   

11.
裸光纤Bragg光栅(FBG)的温度灵敏度约为10pm/℃。在铠装FBG温度传感器中,光栅粘贴于热膨胀系数较大的金属片(如Cu和Al)表面的线槽内。金属片受热膨胀将衍生出光栅的轴向热应变,从而提高光纤光栅的温度响应灵敏度。在采用波分复用技术中的FBG的传感网络方案中,串联的3只光栅均置于温度控制器中。实验表明:当温度从20℃升至80℃时,Cu制和Al制铠装FBG温度传感器的表观温度灵敏度分别约提高34. 3, 42. 7pm/℃,测量重复性分别为2. 3, 2. 8pm。  相似文献   

12.
在基于超磁致伸缩材料Tb0.30Dy0 70Fe1.95的光纤Bragg光栅(FBG)大电流传感器的基础上,通过对传感头进行设计,提出了一种温度补偿的方案,解决了FBG的温度-应变交叉敏感问题,提高了传感器的精度.实验结果表明:在0~90℃的温度变化范围内,该传感器的Bragg波长差与电流变化具有较好的线性度,不受温度...  相似文献   

13.
光纤Bragg光栅压力传感特性研究   总被引:1,自引:0,他引:1  
提出了以半导体硅材料作为光纤Bragg光栅(FBG)衬底的FBG压力传感密封型结构,并对其压力传感特性进行了研究,结果表明:FBG的中心反射波长漂移对压力呈现良好的线性响应特性,在0~35MPa的测压范围内,压力调谐灵敏度为0.034 nm/MPa,有良好的机械性能和稳定性能。通过对实验数据的拟合分析表明:采用这种材料,其中心波长和压力变化有着好的线性拟合度和重复性,且迟滞很小,它们的相关系数都达到0.99,在光传感领域具有实用价值。  相似文献   

14.
光纤Bragg光栅与长周期光纤光栅比较及传感应用   总被引:2,自引:0,他引:2  
阐述了光纤Bragg光栅(FBG)与长周期光纤光栅(LPFG)的常用制作方法、原理、特性,并对它们进行了比较,介绍了目前国内外光纤光栅的最新应用,特别是在传感领域的新应用。对今后的研究方向做了预测,适合于不同用途光纤光栅的写入技术有待于进一步提高,通过减小包层直径来改变光纤光栅特性的方法有待于进一步研究和利用,在折射率传感领域光纤光栅会有更广阔的天地。  相似文献   

15.
一种新颖的纤栅式微振动传感器的温度补偿方法   总被引:2,自引:0,他引:2  
提出了一种新颖的光纤光栅微振动传感器及温度补偿方法,应用特殊机构使2个光纤光栅受到反向应变,温度影响作为共模量得到抑制.分析影响灵敏度和频带宽度的主要因素后,实验上实现了最高灵敏度检测和最佳温度补偿,补偿后在-15~50℃范围内输出振动信号几乎不受温度影响.振动频率达到750Hz,输入振动驱动功率为2mW时,仍能检测到不失真的波形.  相似文献   

16.
针对基于电信号传输的温度传感器难以在石油、化工、变电站等高危环境中做检测的问题,设计了气体压力式光纤Bragg光栅(FBG)温度传感器.采用气体压力式结构,在等强度悬臂梁上下表面的中心轴线上各粘贴一只具有相同敏感系数的FBG,分析了该温度传感器的工作原理,建立了其理论数学模型,并组装了传感器.通过对设计的气体压力式FBG温度传感器进行升降温实验测试,得到传感器的静态性能特性:传感器的线性度为3.59%FS,升温过程中灵敏度为10.14 pm/℃,降温过程中灵敏度为9.99 pm/℃.  相似文献   

17.
为了提高光纤Bragg光栅(FBG)解调系统的波长解调精度,满足实际中高精度测量的需要,提出基于F-P可调谐滤波器和波长基准器,采用相关谱法和线性插值法相结合的处理技术。该方法不但可以有效地抑制噪声,而且,可以精确地检测波长漂移量。实验表明:采用此方法可使Bragg光栅波长分辨力和解调精度相对于传统的峰值检测法有很大提高,波长分辨力达到1 pm,温度测量精度达到±0.2℃。  相似文献   

18.
微波作为一种新型热源已被广泛用于化学研究、食品加工、医疗仪器以及材料热处理等行业中,发展极为迅速。在这些应用中,温度显然是个重要的参数,但处于强电磁场的环境下,在微波场中温度的测量依然是一个技术难题。阐述了光纤光栅温度传感器的原理,以及分析了光纤光栅温度传感器在微波场中测温的前景及应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号