首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对粒子群优化算法容易陷入局部极值点、进化后期收敛速度慢、精度较差等缺点,把Hooke-Jeeves模式搜索方法作为粒子群优化算法的一个局部搜索算子,嵌入到粒子群算法中,Hooke-Jeeves的强局部搜索能力提高了粒子群优化算法的局部收敛速度和精度,从而提出了一种混合粒子群优化算法。通过基准函数和实例测试进行了验证,结果表明,提出的混合算法的收敛速度和精度均优于粒子群优化算法。  相似文献   

2.
粒子群优化粒子滤波算法能有效改善粒子退化问题,但其适应度函数受量测噪声方差影响较大,限制了滤波精度的提高.为此,提出了一种基于粒子群优化的粒子滤波改进算法.该算法给出一种新的适应度函数,用当前状态估计值与各粒子状态的差值大小作为评价标准,使得最终优化粒子受噪声方差影响减小,在量测模型精度高的场合中提高了滤波精度.理论分析及仿真结果表明,本文所提算法的滤波性能优于标准粒子滤波与粒子群优化粒子滤波算法.  相似文献   

3.
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的一类新兴的随机优化算法.介绍了PSO算法的基本原理和一些改进措施及PSO算法的应用,并对其将来的发展进行了展望.  相似文献   

4.
改进的粒子群优化算法   总被引:1,自引:0,他引:1  
粒子群优化算法是一种基于群体的自适应搜索优化算法,存在后期收敛慢、搜索精度低、容易陷入局部极小等缺点,为此提出了一种改进的粒子群优化算法,从初始解和搜索精度两个方面进行了改进,提高了算法的计算精度,改善了算法收敛性,很大程度上避免了算法陷入局部极小.对经典函数测试计算,验证了算法的有效性.  相似文献   

5.
所提出的算法将粒子群优化算法和混沌算法相结合,既摆脱了算法搜索后期易陷入局部极值点的缺点,同时又保持了前期搜索的快速性,最后通过4个测试函数将该算法与基本粒子群算法进行仿真对比,比较结果表明基于混沌搜索的混和粒子群优化算法在收敛性和稳定性等方面明显优于基本粒子群优化算法.  相似文献   

6.
一种新的集群优化方法--粒子群优化算法   总被引:9,自引:0,他引:9  
系统地介绍了粒子群优化算法、各种改进算法以及算法的应用情况。对粒子群优化算法的研究和应用进行了总结和展望,指出了其在机械系统优化设计中的应用前景。  相似文献   

7.
由于粒子群优化算法对多极值复杂问题求解时容易陷入局部极值,提出一种新改进的粒子群优化算法。该改进算法是将粒子群进化过程分为两个不同的阶段,每个阶段应用不同的进化模型,通过结合这两种进化模型的各自优点有效地降低群体陷入局部最优。由仿真实验结果可知,对于复杂多极值函数优化问题,本文算法比标准粒子群优化算法的全局寻优能力更强。  相似文献   

8.
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的一类新兴的随机优化算法.介绍了PSO算法的基本原理和一些改进措施及PSO算法的应用,并对其将来的发展进行了展望.  相似文献   

9.
针对粒子群优化算法(PSO)易于陷入局部最优解并存在早熟收敛的问题,利用禁忌搜索算法较强的“爬山”能力,搜索时能够跳出局部最优解,转向解空间的其他区域的特点,提出了一种新的基于禁忌搜索(TS)的混合粒子群优化算法(TS—PSO),并选用两个函数进行测试.结果表明,TS—PSO比其他改进粒子群算法更能提高收敛速度,获得全局最优解.  相似文献   

10.
粒子群优化算法的研究与展望   总被引:4,自引:0,他引:4  
粒子群优化算法是一种基于群智能的随机优化算法,具有简单易实现、设置参数少、全局优化能力强等优点.着重对粒子群优化算法中的基本算法、改进算法、应用领域和研究热点等方面做了较为详细的论述.  相似文献   

11.
一种改进的粒子群优化算法及其应用   总被引:1,自引:0,他引:1  
介绍了粒子群优化算法及其原理,针对其后期容易陷入局部极值的缺陷,提出了一种改进粒子群算法.改进算法采用全局最优粒子变异策略和部分粒子群部分维初始化策略.通过将其应用于(N M)容错系统模型的实例,对改进算法的性能进行了分析,结果表明,改进算法的搜索效率和精度均优于一般的粒子群算法,同时具有较好的收敛稳定性.  相似文献   

12.
种群分类粒子群改进算法研究   总被引:3,自引:1,他引:3  
针对粒子群算法在陷入局部最优时难于跳出的缺陷,提出一种改进的粒子群算法.该算法首先利用粒子适应值的统计规律对粒子进行分类,对属于不同类别的粒子采用不同的进化模型,对于利用完全模型进化的粒子,采用动态调整学习因子的方法,从而大大提高了算法的优化效率和优化精度.通过反复实验分析,得出学习因子随着进化推进的最优变化规律,并给出了学习因子的最佳函数表达式.仿真结果表明,利用改进的PSO算法优化4种具有代表性的基准函数,无论是在优化精度方面还是在优化效率方面,均较以往提出的PSO算法在性能上有本质的提高.  相似文献   

13.
基于改进粒子群算法的组合测试数据生成   总被引:1,自引:0,他引:1  
针对传统粒子群优化算法生成测试数据容易产生早熟收敛而陷入局部最优的问题,提出一种基于改进粒子群算法的组合测试数据生成算法。该算法在粒子群算法的基础上引入一种惯性权重自适应调整策略,根据粒子的适应度不同采用不同的惯性权重,从而有效的平衡算法的全局和局部搜索能力,增加种群的多样性并提高算法的搜索效率。仿真实验表明该算法与传统粒子群算法相比,所需迭代次数减少,生成组合测试数据速度快。  相似文献   

14.
改进粒子群算法的动态空间调度方法   总被引:1,自引:0,他引:1  
针对船体分段生产调度的多目标性和动态性,提出了一种改进粒子群算法的动态空间调度方法,确定船体分段在工作平台上的加工顺序和空间布局位置.算法以加工完成时间最短和空间利用率最高为目标,采用自适应惯性权重策略保证算法的收敛性,并引入遗传算法中的选择算子和变异算子增强算法的收敛速度和多样性,利用启发式定位策略确定分段的位置.最后,以船厂实际生产数据进行仿真验证.仿真结果表明,所提方法可以大大降低以手工方式制定调度计划的复杂度,并能有效地提高空间利用率达到70%,说明该方法是解决动态空间调度问题的一种有效方案.  相似文献   

15.
针对基本蚁群算法的过早收敛问题,引入信息熵,通过优化参数 ,对基本蚁群算法进行改进,进而寻找结构的最短失效路径。从可靠指标的几何意义出发, 利用罚函数法, 将结构可靠指标的求解问题转化成相应的无约束优化问题,采用粒子群算法对结构可靠指标进行求解计算。以十杆桁架为例,采用响应面法、遗传算法与本算法对结构可靠指标进行对比计算,结果表明改进蚁群与粒子群算法的收敛速度快,计算精度高。  相似文献   

16.
为了进一步提高粒子群优化(PSO)算法的性能,分析了PSO算法的信息共享机制及由个体最优位置构成的平衡点的作用,探讨了一个好的平衡点应满足的条件.在此分析基础上,根据对粒子邻域个体最优位置的不同利用方式,提出了两种利用有效信息的PSO(EIPSO)算法形式:EIPSO-1与EIPSO-2.EIPSO1算法中粒子的平衡点由性能不差于粒子当前位置的邻域个体最优位置组成,EIPSO-2中粒子的平衡点由粒子群中性能不差于当前粒子个体最优位置的粒子个体最优位置组成.EIPSO既充分利用了优秀邻域个体的信息,又避免了较差邻域个体的负面影响.5个测试函数的仿真结果及与其他PSO算法的比较结果验证了新算法的有效性.  相似文献   

17.
一种用于空间调制信号检测的改进粒子群算法   总被引:1,自引:0,他引:1  
为提高空间调制系统信号检测算法的性能,提出基于粒子群的智能信号检测算法及其改进算法.利用粒子智能化搜索,实现信号高效检测;设计权重系数对传统速度更新公式进行修改,避免粒子群陷入局部收敛从而进一步提高算法的检测性能.通过对改进算法的收敛性和复杂度进行理论分析,并在不同天线数目和不同调制方式下对其误码性能进行仿真,仿真结果表明:与传统的粒子群算法相比,本文提出的改进算法具有计算复杂度低、误码率低、收敛快的优点,可作为空间调制接收机的有效备选算法.  相似文献   

18.
《南昌水专学报》2015,(1):18-24
针对标准的粒子群算法和人工蜂群算法收敛性能差、在复杂优化问题易陷入局部最优的缺点,提出了一种改进的融合算法.改进融合算法拥有双种群并行进化,其中粒子群采用改进的反向学习策略,以增加群体的多样性;蜂群中跟随蜂根据个体停滞次数,自适应地改变进化策略,以平衡全局探索与局部开发能力.同时算法将交替共享两个种群的全局最优位置,通过相互引导使融合算法具有更好的寻优能力.8个经典函数和CEC2013的8个复合函数的实验结果表明,与最新的一些改进粒子群和人工蜂群算法相比,该算法的收敛速度和收敛精度均有较显著的优势.  相似文献   

19.
求解背包问题的病毒协同进化粒子群算法   总被引:2,自引:1,他引:1  
为提高粒子群算法的搜索性能,提出一种基于病毒进化理论的改进离散粒子群算法:病毒协同进化粒子群算法.在粒子群中引入生物病毒机制和宿主与病毒基于感染操作的思想,病毒采用与粒子等长的编码方式,执行反向代换、结合等操作,利用病毒的水平感染和垂直传播能力较好地维持个体的多样性和对解空间的局部搜索能力.通过解决背包问题对算法进行验证,仿真表明所提算法搜索性能优于遗传算法、模拟退火及标准粒子群等其他算法.该算法能有效求解背包问题等NP难题.  相似文献   

20.
提出了基于改进二进制粒子群算法的配电网重构策略,在保证系统及用户供电质量的前提下,使得配电网重构的综合费用最低。从配电网重构实际应用出发,提出了综合考虑系统的电能损耗费用、开关运行维护及投切费用和停电损失费用四方面的目标函数。针对普通粒子群算法易陷入局部极值的缺点,采用改进的惯性权值策略,增强了算法的调节功能,克服了普通粒子群算法的早熟收敛现象。算法还对开关操作次数约束进行了处理使之不影响全局最优性。仿真结果表明,这种配电网策略可以明显降低系统网损和综合费用。改进的粒子群算法计算速度快,目标函数更贴近配电网重构的实际情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号