首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Nonlinear elastic materials are of great engineering interest, but challenging to model with standard finite elements. The challenges arise because nonlinear elastic materials are characterized by non‐convex stored‐energy functions as a result of their ability to undergo large reversible deformations, are incompressible or nearly incompressible, and often times possess complex microstructures. In this work, we propose and explore an alternative approach to model finite elasticity problems in two dimensions by using polygonal discretizations. We present both lower order displacement‐based and mixed polygonal finite element approximations, the latter of which consist of a piecewise constant pressure field and a linearly‐complete displacement field at the element level. Through numerical studies, the mixed polygonal finite elements are shown to be stable and convergent. For demonstration purposes, we deploy the proposed polygonal discretization to study the nonlinear elastic response of rubber filled with random and periodic distributions of rigid particles, as well as the development of cavitation instabilities in elastomers containing vacuous defects. These physically‐based examples illustrate the potential of polygonal finite elements in studying and modeling nonlinear elastic materials with complex microstructures under finite deformations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Summary.  Among the parameters affecting the overall material properties of porous media, the most significant involve the micromechanical morphology, the matrix material behavior and the applied load range. Considering a unit cell for the porous medium, several approaches of the material response are developed, which yield the effective properties of the medium. Numerical results are presented and compared with experimental or analytical data available in literature. Proposed formulations impose several material characterizations ranging from linear elastic to incompressible hyperelastic. In the case of nonlinear materials, a special formulation has been developed permitting prediction of the porous material moduli. This formulation considers a special nonlinear form for the strain energy function under specific loading conditions. The proposed method yields simple formulas approximating the effective moduli of porous media, which are useful for design purposes. Received August 3, 2001; revised August 14, 2002 Published online: January 16, 2003 Acknowledgements The first of the authors is grateful to his mentor Dr. Paul J. Blatz for his encouragement all these years for continuous research on the nonlinear theories of hyperelastic materials.  相似文献   

3.
A variational principle for finite isothermal deformations of anisotropic compressible and nearly incompressible hyperelastic materials is presented. It is equivalent to the nonlinear elastic field (Lagrangian) equations expressed in terms of the displacement field and a scalar function associated with the hydrostatic mean stress. The formulation for incompressible materials is recovered from the compressible one simply as a limit. The principle is particularly useful in the development of finite element analysis of nearly incompressible and of incompressible materials and is general in the sense that it uses a general form of constitutive equation. It can be considered as an extension of Key's principle to nonlinear elasticity. Various numerical implementations are used to illustrate the efficiency of the proposed formulation and to show the convergence behaviour for different types of elements. These numerical tests suggest that the formulation gives results which change smoothly as the material varies from compressible to incompressible.  相似文献   

4.
A stabilized scheme is developed for mixed finite element methods for strongly coupled diffusion problems in solids capable of large deformations. Enhanced assumed strain techniques are employed to cure spurious oscillation patterns of low‐order displacement/pressure mixed formulations in the incompressible limit for quadrilateral elements and brick elements. A study is presented that shows how hourglass instabilities resulting from geometrically nonlinear enhanced assumed strain methods have to be distinguished from pressure oscillation patterns due to the violation of the inf‐sup condition. Moreover, an element formulation is proposed that provides stable results with respect to both types of instabilities. Comparisons are drawn between material models for incompressible solids of Mooney–Rivlin type and models for standard diffusion in solids with incompressible matrices such as polymeric gels. Representative numerical examples underline the ability of the proposed element formulation to cure instabilities of low‐order mixed formulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The Mullins effect in rubber-like materials is inherently anisotropic. However, most constitutive models developed in the past are isotropic. These models cannot describe the anisotropic stress-softening effect, often called the Mullins effect. In this paper a phenomenological three-dimensional anisotropic model for the Mullins effect in incompressible rubber-like materials is developed. The terms, damage function and damage point, are introduced to facilitate the analysis of anisotropic stress softening in rubber-like materials. A material parametric energy function which depends on the right stretch tensor and written explicitly in terms of principal stretches and directions is postulated. The material parameters in the energy function are symmetric second-order damage and shear-history tensors. A class of energy functions and a specific form for the constitutive equation are proposed which appear to simplify both the analysis of the three-dimensional model and the calculation of material constants from experimental data. The behaviour of tensional and compressive ground-state Young’s moduli in uniaxial deformations is discussed. To further justify our model we show that the proposed model produces a transversely anisotropic non-virgin material in a stress-free state after a simple tension deformation. The proposed anisotropic theory is applied to several types of homogenous deformations and the theoretical results obtained are consistent with expected behaviour and compare well with several experimental data.  相似文献   

6.
7.
A new methodology for developing macromechanical constitutive formulations for time-dependent materials is presented in this article. In particular, two phenomenological constitutive models for polymer materials are illustrated, describing time-dependent and nonlinear mechanical behavior. In this new approach, short-term creep test data are used for modeling both short-term and long-term responses. The differential form of a model is used to simulate typical nonlinear viscoelastic polymeric behavior using a combination of springs and dashpots. Unified plasticity theory is then used to develop the second model, which is a nonlinear viscoplastic one. Least squares fitting is applied for the determination of material parameters for both models, based on experimental results. Due to practical constraints, experimental data are usually available for short-term time-frames. In the presented proposed formulation, the material parameters determined from short-term testing are used to obtain material parameter relationships for predicting the long-term material response. This is done by extending short-term information for longer time frames. Finally, theoretical and experimental results of tensile tests on polyethylene subjected to various load levels and test times are compared and discussed. Very good agreement of the modeling results with experimental data shows that the developed formulation provides a flexible and reliable framework for predicting load responses of polymers.  相似文献   

8.
A direct mechanical system simultaneously measuring external force and deformation of samples over a wide dynamic range is used to obtain force-displacement curves of tissue-like phantoms under plain strain deformation. These measurements, covering a wide deformation range, then are used to characterize the nonlinear elastic properties of the phantom materials. The model assumes incompressible media, in which several strain energy potentials are considered. Finite-element analysis is used to evaluate the performance of this material characterization procedure. The procedures developed allow calibration of nonlinear elastic phantoms for elasticity imaging experiments and finite-element simulations.  相似文献   

9.
In the present paper a new orthotropic hyperelastic constitutive model is proposed which can be applied to the numerical simulation of a wide range of anisotropic materials and particularly biological soft tissues. The model represents a non‐linear extension of the orthotropic St. Venant–Kirchhoff material and is described in each principal material direction by an arbitrary isotropic tensor function coupled with the corresponding structural tensor. In the special case of isotropy this constitutive formulation reduces to the Valanis–Landel hypothesis and may therefore be considered as its generalization to the case of orthotropy. Constitutive relations and tangent moduli of the model are expressed in terms of eigenvalue bases of the right Cauchy–Green tensor C and obtained for the case of distinct and coinciding eigenvalues as well. For the analysis of shells the model is then coupled with a six (five in incompressible case) parametric shell kinematics able to deal with large strains as well as finite rotations. The application of the developed finite shell element is finally illustrated by a number of numerical examples. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
建筑薄膜具有正交异性和拉伸非线性的力学特性,其本构关系的表征和大变形行为的描述都较为复杂,具有很强的几何、材料双重非线性特征。有限质点法是一种新颖的结构数值分析方法,它将传统分析力学方法中复杂的函数连续体模型用清晰的离散质点物理模型取代,通过质点的运动描述结构的行为。该文根据途径单元的基本概念直接在质点内力计算过程中引入不同的膜材本构,将有限质点法拓展应用于正交异性薄膜结构的几何与材料非线性大变形分析。为了准确表征膜材力学特性,根据复合材料本构理论分别建立了适用于有限质点法的正交异性膜材的线性与非线性拉伸本构模型,并通过若干算例探讨了该文方法和程序的适用性和正确性。  相似文献   

11.
Purely elastic material models have a limited validity. Generally, a certain amount of energy absorbing behaviour can be observed experimentally for nearly any material. A large class of dissipative materials is described by a time- and frequency-dependent viscoelastic constitutive model. Typical representatives of this type are polymeric rubber materials. A linear viscoelastic approach at small and large strains is described in detail and this makes a very efficient numerical formulation possible. The underlying constitutive structure is the generalized Maxwell-element. The derivation of the numerical model is given. It will be shown that the developed isotropic algorithmic material tensor is even valid for the current configuration in the case of large strains. Aspects of evaluating experimental investigations as well as parameter identification are considered. Finally, finite element simulations of time-dependent deformations of rubber structures using mixed elements are presented. Communicated by S. N. Atluri, 5 September 1996  相似文献   

12.
In this work, the creep and recovery properties of rubberlike viscoelastic materials in simple shear are studied by two special constitutive equations for isotropic, nonlinear incompressible viscoelastic material of the differential type. The creep and recovery processes are of significant importance to both the mechanics analysis and engineering applications. The constitutive equations introduced in this work generalize the Voigt-Kelvin solid and the 3-parameter model of classical linear viscoelasticity. They describe the uncoupled non-Newtonian viscous and nonlinear elastic response of an isotropic, incompressible material. The creep and recovery processes are treated for simple shear deformation superimposed on a longitudinal static stretch. Closed form solutions are provided and both processes are described effectively by the exponential function.  相似文献   

13.
The accuracy for cold-bending springback prediction is determined by the sensitivity and accuracy of the material constitutive model. Thus, the material constitutive model is developed and improved by many researchers, and the improved models are applied in the springback calculation with various materials in finite element simulation or theoretical analysis. To provide a reference for the researchers studying cold-bending springback problems, a review of the development and application of the material constitutive models is presented in this paper, which conducts from the elastic behavior, the anisotropy, and the work-hardening. It can be summarized as: (1) Springback prediction result is higher and more accurate when the variable elastic modulus and the nonlinear recovery are considered. (2) The isotropic hardening leads to an overestimation of the springback, which can be avoided by a hardening model describing the Bauschinger effect. (3) The hardening model has greater impact on springback than the yield criterion. (4) Good accuracy of the springback prediction can be achieved when the variable elastic modulus effect, the material anisotropy and the nonlinear hardening are considered together. It is also found the theory development and practical application of the material constitutive models are out of line, due to lacking further experiment, or that the stress loading–reloading history within a bending part may be not so complex as that “ratchetting behavior” discussed.  相似文献   

14.
A mixed finite element method is presented for the large strain analysis of rubber-like materials, which are considered to be nearly incompressible. Two types of constitutive relations are included: generalized Rivlin and Ogden's models. The finite element equations are derived on the basis of a perturbed Lagrangian variational principle from which both the displacement and pressure fields are independently approximated by appropriate shape functions. A physically meaningful pressure parameter is introduced in the expression of complementary energy. In the paper, a special effort is made to split the deformation energy into two distinct parts: isochoric and hydrostatic parts. By doing this, a quadratic convergence rate of nonlinear iterative solution is achieved, particularly for problems deformed in the large strain range. The finite element equations are specialized for a two-dimensional 9-node Lagrange element with three-term pressure parameters. Five examples are given to demonstrate the application of the proposed numerical algorithm.Research work supported by National Science Foundation under the grant number EET-8714628  相似文献   

15.
Summary A finite-element methodology for the static analysis of an axisymmetric, toroidal membrane of initially circular cross section under internal uniform pressure is developed. The torus experiences large elastic deformations and its material behavior is described by a nonlinear elastic constitutive equation. Both incompressible and compressible material cases are considered. Axisymmetric finite elements are employed in the formulation, which is established with the aid of a variational principle. The resulting nonlinear stiffness equations are solved by a highly accurate and efficient least squares method. The accuracy of the finite element method is assessed. Numerical results for the deformational configuration and the developed stresses of a torus as functions of the applied internal pressure are presented in order to illustrate the method and demonstrate its accuracy by comparison with analytical results whenever this is possible.  相似文献   

16.
任意截面预应力混凝土细长柱的非线性分析   总被引:1,自引:0,他引:1  
楼铁炯  郭乙木  黄丹 《工程力学》2004,21(6):161-165
提出了轴力和双向弯曲作用下任意截面混凝土和预应力混凝土细长柱的非线性有限元计算模型。分析时既考虑了由单元变形和轴力二次矩引起的几何非线性效应,也考虑了由材料非线性应力应变关系和截面刚度矩阵引起的材料非线性效应。推导了非线性全过程分析的标准有限元公式,得到的单元刚度矩阵可分割成三个子矩阵,分别反映了材料非线性、材料非线性和单元大位移的耦合、轴力二次矩等三种不同的非线性作用效应。计算分析结果和试验结果吻合较好。  相似文献   

17.
A numerical multifield methodology is developed to address the large deformation problems of hyperelastic solids based on the 2D nonlinear elasticity in the compressible and nearly incompressible regimes. The governing equations are derived using the Hu-Washizu principle, considering displacement, displacement gradient, and the first Piola-Kirchhoff stress tensor as independent unknowns. In the formulation, the tensor form of equations is replaced by a novel matrix-vector format for computational purposes. In the solution strategy, based on the variational differential quadrature (VDQ) technique and a transformation procedure, a new numerical approach is proposed by which the discretized governing equations are directly obtained through introducing derivative and integral matrix operators. The present method can be regarded as a viable alternative to mixed finite element methods because it is locking free and does not involve complexities related to considering several DOFs for each element in the finite element exterior calculus. Simple implementation is another advantage of this VDQ-based approach. Some well-known examples are solved to demonstrate the reliability and effectiveness of the approach. The results reveal that it has good performance in the large deformation problems of hyperelastic solids in compressible and nearly incompressible regimes.  相似文献   

18.
A mathematical model for large amplitude wave propagation in a thin walled distensible tube is developed. The tube wall is considered as a membranic shell made of an incompressible, non-linear viscoelastic material with cylindrical orthotropy. The fluid is regarded as incompressible and inviscid and the flow is quasi-one-dimensional. The case of a pressure step applied at one end of a uniform straight tube is solved as an example. The system of partial differential equations, describing the motions of the fluid and the wall, are integrated numerically by using a two-step explicit scheme. Flow and deformation variables as well as the wave velocity are determined in time and space.  相似文献   

19.
This article provides a comprehensive investigation on the fracture behavior of cracked functionally graded piezoelectric materials (FGPMs). To account for the effect of dielectric medium inside the crack upon the fracture behavior of FGPMs, a dielectric crack model is used in this work, in which the electric boundary condition along crack surfaces is deformation-dependent and is nonlinear. The analytical formulations are developed using Fourier transform technique and solving the nonlinear singular equations using Chebyshev polynomials. A solution technique is developed to determine the desired deformation mode of the crack. Numerical simulations are given to show the effects of material gradient and the dielectric medium filling the crack upon the fracture behavior of FGPMs. The results obtained from this dielectric crack model clearly demonstrate how the transition between electrically impermeable and permeable crack models occurs with the change of crack opening displacement in response to the applied electromechanical loads. It is also observed that a critical state for the applied electromechanical loading exists for FGPMs that determines whether the impermeable (or permeable) crack model serves as the upper or lower bound for the dielectric crack model considering the effect of dielectric medium filling the crack.  相似文献   

20.
Starting with a recently developed three-dimensional eight node brick Cosserat element for nonlinear elastic materials, a simplified Cosserat element is developed for torsionless axisymmetric motions. The equations are developed within the context of the theory of a Cosserat point and the resulting theory is hyperelastic and is valid for dynamics of nonlinear elastic materials. The axisymmetric Cosserat element has four nodes with a total of eight degrees of freedom. As in the more general element, the constitutive equations are algebraic expressions determined by derivatives of a strain energy function and no integration is needed throughout the element region. Examples of large deformations of a nearly incompressible circular cylindrical tube and large deflections of a compressible clamped circular plate are considered to test the accuracy of the element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号