首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
车轮踏面磨耗引起轮轨匹配不良,极易造成车辆异常振动。设计车轮镟修型面,改善轮对及车辆振动特性。以圆弧长度、半径、及圆弧坐标为变量,采用GA-BP算法,以车辆运行平稳性与等效锥度为优化目标构建踏面优化模型,进行多目标寻优求解,获得磨耗车轮的镟修型面。结合车辆系统动力学进行分析,结果表明:镟修型面LMB-opti的轮轨静态匹配良好,车轮踏面接触点分布均匀,构架横向振动加速度在(-0.45g,0.45g)之间,车辆运行平稳性指数为2.2,降低了23.3%;列车运行5万km、10万km后,镟修型面LMB-opti比标准型面LMB磨耗深度分别降低了4.7%和5.1%,有利于减缓车轮凹磨及改善车辆的异常振动。  相似文献   

2.
车轮非圆化一直是铁路界难以彻底解决的问题之一。针对中国某地铁线路实际运营中出现的车辆振动过大问题,通过对镟修前后车轮非圆化测试和列车关键部件振动加速度测试发现:镟修前车轮非圆化磨耗径跳值达到0.492mm,并显著表现出7阶的非圆化特征,镟修后车轮径跳值为0.046mm,7阶的非圆化特征消失;车轮镟修后,轴箱、构架测点振动加速度均方根值分别降低37.9%、47.7%,地板振动最大幅值减少50%以上,列车平稳性得到明显改善,平稳性指标几乎全部在2.0以下;车轮非圆化磨耗使轴箱振动加速度呈现出明显的随速度变化的转频成分,在车速70km/h时,7阶非圆化磨耗产生的轮轨激励频率为52Hz。  相似文献   

3.
为了研究车轮异常磨耗对车辆动力学性能影响的规律,本文对某CRH1型动车组进行了持续跟踪测试,得出了车轮外形及磨耗数据,并分析了其轮缘、踏面厚度、等效锥度与车体振动加速度等主要参数。结果表明:各车轮均存在明显的轮缘偏磨现象,且磨耗速度与运行里程成正增长趋势,车轮偏磨直接影响了车辆的横向稳定性。  相似文献   

4.
通过对动车组线路的长期跟踪测试,发现某线路动车组轮缘磨耗异常是该线路动车组轮对报废的主要原因。对3种常用动车组的轮缘磨耗情况进行跟踪实测,并对比分析3种动车组轮缘磨耗规律。为探究对车辆动力学性能影响较大的悬挂参数对车轮轮缘磨耗的影响,采用动力学仿真分析软件SIMPACK建立动车组的动力学仿真模型,计算不同悬挂参数下车辆的动力学性能参数。剖析不同悬挂参数下的动力学性能指标,根据轮轨发生两点接触后的受力状态,分析各个动力学性能参数变化对轮缘磨耗的影响,并验证悬挂参数的改变对车辆直线运行性能的影响。结果表明:轴箱定位刚度对车辆通过小半径曲线时的轮轨冲角和横向力影响较大,是影响轮缘磨耗的主要悬挂参数。  相似文献   

5.
为对比不同线路、相同平台动车组车轮磨耗演变规律及其对动车组动力学性能的影响,对速度等级250 km/h的A、B两条高速线路上运行的同平台动车组车轮磨耗进行长期跟踪测试。将实测车轮踏面与实测钢轨廓形匹配,对比分析车轮磨耗对等效锥度、接触点分布等轮轨接触几何关系的影响。利用多体动力学软件建立动车组拖车动力学仿真模型,研究车轮磨耗演变规律对动车组动力学性能及轮轨滚动接触疲劳损伤的影响。研究结果表明,A线路车轮平均磨耗速率为0.05 mm/万km,踏面磨耗分布在-20~30 mm范围内,呈现凹形磨耗;等效锥度增大速率约为0.006/万km;轮轨接触点逐渐向钢轨轨肩处靠拢,存在明显跳跃现象。B线路车轮平均磨耗速率约为0.025 mm/万km,踏面磨耗分布在-35~50 mm范围内,磨耗分布较均匀;等效锥度稳定在0.03左右,随运营里程的增大没有明显的变化趋势,轮对横移量在10mm以内的轮轨接触点始终保持车轮踏面中部与钢轨轨顶中部接触,轮轨接触点分布均匀。随着运行里程的逐渐增大,A线路的动力学性能略有下降,B线路的动力学性能基本稳定。B线路的车轮表面疲劳指数小于A线路,车轮发生滚动接触疲劳裂纹的可...  相似文献   

6.
刘冉  栗杨  王衡禹  赵鑫 《机械》2022,(10):42-50
就某城际动车组车轮的Ⅰ类滚动接触疲劳,选择一列动车组开展一个镟修周期的车轮廓形对比试验,其中1~4车用LMA廓形、5~8车用LM廓形。发现相同运行里程下,LM廓形车轮出现了Ⅰ类疲劳、但LMA廓形车轮未出现。基于SIMPACK建立了车辆动力学模型,并运用损伤函数开展疲劳预测。结果表明,导向轴低轨侧车轮易萌生Ⅰ类疲劳,半径在350~450 m范围内的小半径曲线最严重,镟后8万公里后LM廓形车轮的疲劳损伤峰值始终比LMA廓形高,考虑到现场车轮磨耗,可以解释试验中LM廓形发生疲劳而LMA不发生的现象。另外,疲劳峰值随里程呈现一定的波动,与现场观测Ⅰ类疲劳裂纹保持稳定而没有恶化的现象吻合。  相似文献   

7.
动车组车体异常振动问题分析及治理研究   总被引:1,自引:1,他引:0  
对某型高速动车组车辆进行长期跟踪测试,发现当车轮镟修后车辆运行18万km以上时,车体异常抖振现象时有发生,且抖振时,车体横向及垂向振动在10 Hz频率附近均出现异常放大现象.结合车轮踏面测试分析、车体和构架振动测试分析以及车体试验模态分析,对车体异常抖振机理进行研究.结果表明,当车轮镟修后车辆运行18万km以上时,车轮等效锥度增加至0.501以上,且车轮踏面出现凹磨,轮轨接触位置较分散,存在跳跃现象;当车辆运行过程中受到较大的线路横向激扰时,车轮产生较大横移量,轮轨接触位置发生突变,并导致转向架蛇行运动频率陡升至与车体菱形模态频率接近而引发二者同步运动,致使菱形模态振动放大,是车体发生异常抖振的原因.为治理该问题,以提高车辆运行稳定性及运行平稳性为目标,提出基于正交试验的多目标车辆系统悬挂参数优化方法,对一系横向、纵向定位刚度和抗蛇行减振器节点刚度及阻尼系数进行同步优化,仿真计算结果表明,悬挂参数优化后,车辆在不同踏面磨耗状态下的临界速度、运行安全性及运行平稳性均得到明显提高.对悬挂参数优化方案进行在线试验验证,结果表明,采用优化的悬挂参数后,车体抖振处能量明显下降,抖振问题得到明显改善.  相似文献   

8.
为了研究不同轮轨廓型匹配时高速列车车轮踏面磨耗情况,运用多体动力学软件UM建立某高速列车单车车辆/轨道耦合动力学模型,利用轮轨滚动接触理论和车轮磨耗预测模型,对比分析列车CHN60和UIC60钢轨廓型与LMA车轮廓型匹配时车轮踏面磨耗规律。研究表明:在运营里程低于26. 5万km时,LMA/CHN60和LMA/UIC60车轮踏面磨耗相差不大,在运营里程超过26. 5万km以后,LMA/UIC60磨耗显著增大;相比LMA/CHN60,车轮踏面磨耗对LMA/UIC60轮轨接触点的分布状态影响更大,前者的轮轨接触状态要优于后者;在车辆运营里程低于13. 5万km时,LMA/CHN60和LMA/UIC60的车轮磨耗功最大值相差不大,在车辆运营里程超过13. 5万km后,LMA/UIC60轮轨匹配下的车轮磨耗功最大值逐渐大于LMA/CHN60轮轨匹配; 2种轮轨廓型在运行中的车轮磨耗功率最大值都逐渐减小,但LMA/UIC60轮轨匹配下的磨耗功率最大值普遍较大。  相似文献   

9.
车轮磨耗下车下悬吊系统振动特性研究   总被引:2,自引:1,他引:1  
为研究高速动车组车下悬吊系统在车轮磨耗下的振动特性演变规律,建立考虑车体弹性振动和车下悬吊设备的刚柔耦合动力学模型,分析一个镟轮周期内车轮磨耗对车体和车下悬吊设备振动响应的影响。研究结果表明:车轮磨耗主要影响车下悬吊系统的横向振动,对垂向振动影响较小;在前5万km运营里程下,车体和车下设备的振动特性基本保持不变,随着里程的增加,车体和悬吊设备的振动特性不断恶化,当运营里程达到19.1万km时,车体和悬吊设备的振动加速度幅值达到了新轮下的2倍;车辆运行速度不高于140 km/h时,车轮磨耗对车体和设备的振动影响甚微,随着速度的增加,车轮磨耗对车体和悬吊设备的影响逐渐增大;通过选取合理的横向悬吊刚度可以有效抑制车轮磨耗对悬吊系统的影响,其取值范围在0.7~1.5 MN/m内比较合适。  相似文献   

10.
列车车轮多边形磨耗会显著加大轮轨相互作用力和转向架关键部件振动幅度,恶化车辆系统和轨道部件的工作环境,严重时将会威胁到行车安全。基于三维车辆-轨道耦合动力学模型,用谐波叠加法模拟车轮多边形磨耗,作为车辆轨道耦合动态行为分析时的激励输入,计算车轮多边形磨耗阶次、车辆运行速度和运行里程对轮轨力的影响,并分析车轮多边形磨耗与轮轨力之间的相位关系;建立转向架系统高频振动全有限元模型,以时域轮轨力作为模型输入,分析车轮多边形磨耗参数对转向架轴箱、构架振动响应的影响。计算结果显示,随着列车运行速度、车轮多边形磨耗幅值和阶数的提高,轮轨垂向作用力波动范围和转向架振动响应均会显著增大。所得的结果可为高速列车车轮多边形形成的机理和抑制措施的进一步研究提供参考和指导。  相似文献   

11.
严重的车轮非圆化磨耗会导致剧烈的轮轨冲击作用,降低车辆轨道疲劳寿命,威胁行车安全.为调查分析电力机车车轮非圆化磨耗特征及其对机车车辆系统振动的影响,对国内某型号电力机车车轮非圆化磨耗进行大量测试,对其中频繁发生异常振动报警和运营正常的机车进行动态测试;此外为探究车轮镟修对非圆化磨耗消除作用的影响,对镟修前后的车轮非圆化磨耗进行跟踪测试.测试结果表明,车轮高阶非圆化磨耗是造成机车轮对异常振动报警的主要原因;相比于从未发生振动报警的机车车轮,频繁发生振动报警的车轮除低阶非圆化磨耗外,还存在15~25阶非圆化磨耗,所对应的中心波长为158~250mm;采用Q型不落轮镟床不能有效消除车轮高阶非圆化磨耗,经过一段时间运营后车轮非圆化磨耗发展明显.基于机车车辆-轨道耦合动力学仿真,系统分析非圆化磨耗幅值和阶次以及车辆运行速度对轮轨系统动态行为的影响,提出机车车轮非圆化磨耗的养护维修安全限值.  相似文献   

12.
川藏铁路的建设面临着极端的地质灾害与极差的工程环境两大挑战,列车运行线路的空间复杂性势必会对轮轨磨耗性能造成影响。为探究列车在复杂的空间线型环境下的磨耗规律,根据川藏铁路的线路设计参数设置长大坡道与平面曲线的叠加线路,建立高速动车组动力学模型与车轮磨耗预测模型,仿真分析牵引制动条件下动车组在长大坡道上运行时的车轮磨耗特征。结果表明:LMA型车轮踏面的CR400-AF高速动车在坡道-曲线叠加路况上运行时,前位转向架的轮轨接触状态为两点接触,后位转向架的轮轨接触状态为单点接触;平面曲线与坡道的相对位置对动车组车轮磨耗存在一定的影响;随着曲线半径的增加,车轮的磨耗深度逐渐降低,且降低的趋势越来越小。动车组在坡道-曲线路况上的长期运行过程中存在临界里程和临界速度,为防止车轮的剧烈磨耗,建议在动车组长期运营过程中应尽量避免以临界速度或更低的速度运行,在运营里程超过临界里程时应及时对车轮进行镟修。  相似文献   

13.
目前动车组轮广泛采用的经济型镟修法,镟修后车轮并没有达到标准车轮轮缘厚度。为探究经济镟修型面对轮轨匹配性能产生的影响,为车轮维修策略的制定提供理论依据,对比分析标准车轮型面和新镟修的不同轮缘厚度车轮型面的静态匹配特性与动力学性能。结果表明:目前镟修方法得到的薄轮缘镟修型面有利于提高车辆的直线运行临界速度,但其他动力学性能指标略有下降;在通过不同半径曲线时,各型面曲线通过性能相差不大,小半径曲线工况下,各型面轮缘均与钢轨贴靠;通过大半径曲线时,在较大横移激扰下薄轮缘型面存在失稳的风险,从而造成较大的轮轨横移量及轮轴横向力,使轮缘与钢轨贴靠现象严重,造成严重的轮缘磨耗。  相似文献   

14.
车轮多边形不仅会严重影响高速列车的运行性能,同时会随着车轮的磨耗发生不断演变,因此其演变行为值得关注。对高速列车车轮多边形磨耗的演变过程进行数值模拟,并分析相位差对多边形磨耗的影响。结果表明,车轮初始3阶多边形会演变成多阶混合多边形,其中3的整数倍阶多边形占主要地位;车轮多边形发展过程中,存在一个磨耗急剧增大的"转折里程",应在"转折里程"之前对车轮多边形进行处理;车轮多边形使轮轨垂向力和轮对构架垂向振动加速度增大,同时导致跳轨现象,影响车辆运行安全;多边形相位差会导致车轮的磨耗迅速增加,磨耗率在轮相位差为1/2周期时达到最大。研究成果为车轮多边形的控制手段及现场镟修策略提供了理论依据。  相似文献   

15.
铁道车辆车轮非圆化磨耗形成机理及控制措施研究进展   总被引:1,自引:1,他引:0  
车轮非圆化磨耗是铁道车辆常见的一种车轮磨耗形式,对车辆的振动、噪声、乘坐舒适性和运行安全性均具有较大影响.介绍车轮非圆化的表现形式,总结国内外轮轨轨道交通车辆运营中出现的车轮非圆化磨耗现象.重点总结车轮非圆化磨耗的形成机理,根据车轮非圆化磨耗形成原因的不同将其分成三大类:由车轮初始缺陷引起的非圆化;由车辆-轨道固有振动引起的非圆化;由踏面制动时闸瓦与车轮间热弹性失稳引起的非圆化.回顾车轮非圆化磨耗仿真的研究历程,指出当前车轮非圆化磨耗研究面临的难点和挑战.对车轮非圆化磨耗的控制措施进行总结,重点讨论改善车轮镟修质量、利用闸瓦或研磨子修复车轮非圆化这两个最主要措施.探讨针对车轮非圆化磨耗亟需开展的研究,可为车轮非圆化磨耗机理的研究和控制措施的选用与实施提供参考.  相似文献   

16.
针对车轮多边形磨耗不同状态下对车辆动力学影响展开研究,建立轮轨柔性某地铁B型车辆刚柔耦合动力学模型,计算车轮多边形阶数和谐波幅值变化对轮轨垂向力、轮轨振动、运行平稳性等车辆动力学性能的影响。结果表明:阶数和谐波幅值在速度增大时轮轨垂向力逐渐增大;阶数14阶、18阶是轮对和轴箱振动加速度随谐波幅值变化产生振动的主要诱因;动力学指标中轮重减载率在18阶、0.04 mm时对其影响最大;车轮多边形使钢轨垂向动位移和振动加速度增大,谐波幅值对钢轨振动特性更有影响。建议考虑制造轮轨柔性,18阶、0.04 mm时对轮轨璇修打磨,以提高动力学性能和行车安全性。  相似文献   

17.
基于FASTSIM理论的磨耗功模型,建立了国内某城际动车组的多体系统动力学仿真模型,通过搭建动力学仿真模型与磨耗功模型的联合仿真平台,以车轮磨耗深度0.1 mm为踏面外形的更换基准,实现了车轮踏面外形的磨耗预测。研究结果表明:仿真分析得到的车轮前5万公里踏面的磨耗分布与实测的车轮磨耗状态类似,仅在磨耗量上存在一定的差异;从一系悬挂参数对车轮磨耗量的影响中可以看出,减小轴箱拉杆和一系轴箱弹簧垂向刚度可以有效减少车轮磨耗,而一系垂向减振器的卸荷力与卸荷速度对磨耗量的影响很小。  相似文献   

18.
对于动车组车轮磨耗引起的动力学性能降低问题,车轮型面优化是一个很好的解决方案。采用旋转压缩微调法(Rotary-scaling fine-tuning method,RSFT)进行型面生成;建立某型动车组车辆动力学模型,采用该模型计算相应的优化目标和约束条件;利用径向基神经网络-粒子群(Radial-based neural network-particle swarm optimization,RBF-PSO)算法优化出最优廓形。通过对比优化前后车轮型面的动力学性能和磨耗性能,可以发现:优化后车轮型面临界速度为424.6 km/h,增大10.2%;横向平稳性和垂向平稳性指标整体减小,同时提高了曲线通过时的安全性指标,脱轨系数、倾覆系数和轮轴横向力都进一步减小。优化后车轮型面接触点分布相对更加均匀,等效锥度减小。同时优化后车轮型面有效减小车轮磨耗深度,并减小了轮缘根部磨耗,车轮最大磨耗深度减小9.8%。  相似文献   

19.
通过线路测试和数值仿真对某B型地铁列车车轮异常磨耗现象进行深入分析。结合轮轨接触几何关系和轮轨滚动接触理论进行轮轨静态接触分析;基于UM软件建立该地铁车辆动力学仿真模型和磨耗预测模型,计算轮对运动状态和车轮磨耗水平。通过对比不同轮轨匹配的仿真结果来分析该地铁车辆发生轮缘和踏面异常磨耗的原因,进而提出相应的控制措施。结果表明,该地铁线路小半径曲线占比较大且钢轨轨底坡异常。地铁车辆轮缘和踏面异常磨耗是由较大轨底坡线路条件下轮轨型面匹配关系不合理所导致。将全线轨底坡修正成1/40对车轮异常磨耗现象的减缓效果有限。为有效减轻该地铁车辆车轮异常磨耗,可考虑将车轮踏面外形由S1002镟修为LM。  相似文献   

20.
高速列车轮对磨耗统计规律及预测模型   总被引:1,自引:0,他引:1  
为研究我国高速列车轮对踏面磨耗规律,对某线路服役高速动车组进行跟踪测试,记录其镟轮周期内的踏面磨耗量,并基于对磨耗统计特征的两次拟合提出轮对型面磨耗预测函数模型。对某高速线路实测型面磨耗量进行拟合,分别得到各走行里程下磨耗量关于型面位置的拟合函数;并进一步对各走行里程下的拟合函数系数进行二次拟合,得到磨耗量关于型面位置及走行里程的二元预测函数。在模型的预测精度与适用性验证时,对比相同走行里程下预测型面和实测型面在轮轨接触几何关系与车辆各关键部件加速度响应两方面结果。对比结果显示,提出的磨耗预测模型在轮轨接触点、等效锥度、轮轨作用力及车辆安全性等各方面均与线路实测结果具有很好的一致性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号