首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍了在硫酸介质中使用P507+N235双溶剂萃取体系萃取除铁的工艺应用。通过生产实践发现,铁以三价态被萃取,有机相由15%P507+5%N235+80%260#稀释剂组成,相比2∶1,铁萃取率达到98%以上,在反萃剂为250g/L稀硫酸溶液,相比4∶1的条件下反萃,铁反萃率达到98%以上,反萃液经均相渗析膜分离回收酸,渗析残液通过控制pH,可采用铁矾法、中和除铁和砷酸铁等工艺除铁,铁脱除率均可达到90%以上。  相似文献   

2.
对白云鄂博尾矿提钪浸出液除铁工艺条件进行了研究。最终确定以N235为萃取剂,在盐酸介质中选择性萃取Fe(Ⅲ)。结果表明,当有机相组成为30%N235+5%异辛醇+65%磺化煤油、相比1∶1时,通过单级萃铁,Fe(Ⅲ)的萃取率99%以上,Fe(Ⅲ)反萃率99%以上,而Sc(Ⅲ)萃取率不足8%,基本满足工艺要求。  相似文献   

3.
研究了用叔胺N235从石煤硫酸浸出液中萃取钒工艺,考察了萃取剂组成、萃原液p H值、萃取时间,反萃取剂组成、反萃时间等因素对萃取率及反萃率的影响,并探究了萃取与反萃过程中钒离子与杂质离子的分离效果。试验结果表明:对于钒质量浓度为1.89 g·L~(-1)的含钒酸浸液,用20%N235+5%TBP+75%磺化煤油作萃取剂,在p H为1.7、相比O/A=1∶3条件下萃取2 min,钒单级萃取率在90%以上,经过两级逆流萃取,钒的总萃取率达到98%以上;对于负载9.92 g·L~(-1)钒的有机相,用6%Na_2CO_3溶液作反萃剂反萃钒,控制相比O/A=3∶1,反萃时间4 min,钒的单级反萃率达58%,经过两级反萃取,钒的反萃率达到99%以上,同时与杂质离子有较好的分离效果,其中对铁、铝、镁的总去除率达到99%以上,对磷、硅的总去除率达到60%以上。该反萃液通过铵盐沉钒后所得五氧化二钒产品质量达到YB/T 5304-2011冶金98级标准。  相似文献   

4.
采用N235从镍钼矿盐酸浸出液中萃取钼的研究   总被引:3,自引:0,他引:3  
采用N235对镍钼矿盐酸浸出液进行了萃取钼的研究。试验结果表明,在最佳工艺条件下,5级逆流钼萃取率可达98%以上,镍损失率小于1%,负载有机相经稀酸洗涤除铁后采用氨水反萃,1级反萃率达97%以上,反萃液钼浓度为50 g/L左右,达到了钼镍分离及钼富集转型的目的。  相似文献   

5.
介绍了某锌冶炼厂采用P507+N235组成的双溶剂萃取体系从硫酸浸出液中萃取砷铁的生产情况,并对高酸砷铁反萃溶液返回锌冶炼系统存在的问题进行分析。采用膜分离工艺处理反萃溶液,对比分析纳滤膜和扩散渗析膜分离的工艺条件和投资运行成本。结果表明,纳滤膜和扩散渗析膜均可以有效分离溶液中杂质元素:其中采用纳滤膜工艺时,截留浓液中铁、砷、锌、硫酸和油份的截留率分别为91.2%、88.55%、87.5%、47.44%和50%,酸回收利用率为52.56%;采用扩散渗析膜工艺,渗析残液中铁、砷、锌、硫酸和油份的截留率分别92%、87.94%、90%、5.13%和75%,酸回收利用率为94.87%。截留浓液和渗析残液均采用石灰中和法脱除溶液中的砷铁,过滤溶液返回系统实现资源循环利用,扩散渗析膜相比纳滤膜投资少,操作维护简单,生产成本低,更适合用于工业生产。  相似文献   

6.
采用N235+仲辛醇+磺化煤油萃取体系+氨水反萃体系对废石化催化剂萃钒余液进行钼的回收研究,考察了各因素对钼萃取率和反萃率的影响,并获得优化条件,同时对钼反萃液进行钼酸铵产品的制备。结果表明:在萃取条件为初始pH 2.0、萃取体系20%N235+5%仲辛醇浓度+75%磺化煤油、萃取相比O/A=1/5、萃取时间5 min的条件下,Mo萃取率达到99.23%;反萃条件为反萃相比O/A=5/1、氨水体积浓度15%、反萃时间3 min, Mo反萃率达到99.36%,反萃液中Mo浓度可满足沉钼要求;反萃液采用酸沉结晶法制备钼酸铵产品,钼以四钼酸铵产品析出,产品纯度为99.62%,达到了GB/T 3460—2007-MSA-3标准。  相似文献   

7.
系统研究了转炉钒渣无焙烧酸浸液中钒与铁的萃取分离情况。进行萃取-反萃单因素试验,分别考察萃取温度、初始p H值,萃取剂组成、萃取相比,萃取、反萃时间,反萃剂浓度、反萃相比等因素对萃取和反萃结果的影响。萃取试验结果表明:在常温(20℃),浸出液p H2.0,有机相组成20%P204+5%TBP+75%磺化煤油,相比(O/A)1∶1,震荡时间5 min条件下,钒的一级萃取率达到74.49%,铁的萃取率仅为1.92%,其他离子不进入有机相;该条件下进行四级错流萃取,钒的总萃取率可达97.89%。反萃试验结果表明:反萃时间4 min,反萃剂浓度200g/L,反萃相比(O/A)5∶1时,钒的反萃率达98.58%,有机相中的铁不进入反萃水相,提钒酸浸液得到净化。  相似文献   

8.
针对现有锗萃取剂的弊端,采用HBL101从高浓度硫酸体系中萃取锗,分别考察了料液酸度、萃取剂浓度、时间、相比、温度等因素对锗萃取及反萃的影响并绘制出等温线。结果表明,在最佳条件下,采用体积分数为15%的HBL101+磺化煤油作为有机相(相比O/A=1∶1),经过4级逆流萃取,锗萃取率可达到98.32%;负载有机相用150g/L NaOH溶液反萃(相比O/A=8∶1),经过6级逆流反萃,锗反萃率达98%以上。  相似文献   

9.
氧压酸浸炼锌流程中置换渣提取锗镓铟   总被引:3,自引:0,他引:3  
为从锌精矿氧压酸浸炼锌工艺的置换渣中提取锗镓铟元素,对二段浸出-萃取分离锗镓铟铜工艺进行研究,锌电积废液用于一段浸出,H2SO4-HF混酸用于一段浸出渣的二段浸出;一段浸出液分别采用二(2-乙基已基)磷酸(P204),C3~5氧肟酸+二(2-乙基已基)(P204)磷酸及5-壬基水杨醛肟(CP150)分别萃取铟,锗镓及铜;二段浸出液用C3~5氧肟酸萃取提锗,萃余液加入氟化钠沉淀氟硅酸钠。试验结果显示,一段浸出用酸度为3.1 N的湿法炼锌电积废液,液固比4∶1,初始氧分压0.4 MPa,150℃,经3 h的二级浸出后,浸出渣率约为15%,铟镓铜锌4个元素的浸出率都达到98%,而锗浸出率约为80%;一段浸出残渣用H2SO4-HF混酸浸出,其氟/硅摩尔比4.2∶1.0,硫酸浓度为2 N温度80℃,液固比3∶1,浸出时间为5 h,一段浸出残渣中锗几乎完全浸出;一段浸出液在pH 2.0~2.2,30%二(2-乙基已基)磷酸萃取,部分铁与几乎所有的铟被萃取,用2 N盐酸反萃,铟、铁的反萃率分别为98.28%和2.79%,可达到铟铁的分离;萃铟余液用3%的氧肟酸+10%二(2-乙基已基)磷酸-煤油协萃锗、镓,铁也发生共萃,锗、镓和铁的单级萃取率均在90%以上,采用次氯酸钠反萃,锗反萃率近100%,且Ge/Ga和Ge/Fe的反萃分离系数分别为10836和318.7。用3 mol·L-1的硫酸,相比(W/O)1∶2反萃镓,镓的一次反萃率达97.5%。二段浸出液采用10%C3~5氧肟酸-煤油萃取,相比(O/W)为1.2∶1.0,锗的单级萃取率达到98.31%。经30%次氯酸钠溶液反萃,锗的一次反萃率达到98.83%,萃余液加入氟化钠,氟硅化物的沉淀率为90%左右。沉硅滤液经补充氢氟酸后返回二段沉出,锗的浸出仍可达到较完全的浸出。该工艺无废液排放,并且通过与湿法炼锌流程的物料交换而变得简化。  相似文献   

10.
P_(204)萃取含铜酸性废水中铁的研究   总被引:3,自引:0,他引:3  
本文采用P204萃取剂对湿法炼铜酸性废水中的铁进行了萃取反萃研究。研究了混合时间、P204体积浓度和相比对萃取铁的影响,同时检测了萃取过程中水相硫酸浓度的变化。针对本试验研究的原料液,采用50%P204在相比(O/A)为9/1时进行萃取,Fe3+的萃取率达到85.96%。采用6N盐酸溶液对负载Fe3+的50%P204有机相进行反萃,当反萃相比(O/A)达到1∶9时,Fe3+的反萃率达到77.44%。  相似文献   

11.
从复杂离子溶液中精准分离有价金属离子一直是湿法冶金领域研究中的重点与难点,溶剂萃取是目前较成熟的复杂离子分离手段。本文以红土镍矿硫酸酸浸工艺中MHP酸解液为研究对象,采用P204+磺化煤油为萃取剂从MHP酸解液中分离Mg2+、Mn2+、Cu2+、Zn2+等杂质离子,考察有机相P204含量、皂化率、硫酸浓度和萃取相比(O/A)对杂质离子萃取、洗涤、反萃效果的影响。结果表明:当有机相P204含量为30%、皂化率为65%、相比O/A为2∶1时,Mn2+、Cu2+单级萃取率达到90%以上,Zn2+单级萃取率达到70%以上;当洗涤硫酸浓度为0.4 mol/L、O/A为5∶1时,Co2+、Mg2+单级洗脱率达到40%;当反萃硫酸浓度为2.5 mol/L、O/A为7∶1时,Mn2+、Cu2+、Zn2+单级反萃率均达到80%以上。通过萃取、洗...  相似文献   

12.
电解金属锰合格液中锰镁的萃取分离研究   总被引:1,自引:0,他引:1  
利用P507-磺化煤油体系对电解金属锰合格液中的锰镁组分进行了萃取研究。分别对硫酸铵的浓度,P507的体积分数,皂化率,相比以及反萃工艺中的各个参数进行了探讨。结果表明:在硫酸铵浓度为78.00 g/L,P507体积分数为30%,皂化率为20%,相比为1∶1等条件下,镁的萃取率达到48.57%,锰的萃取率达到了75.00%;反萃过程中镁的最高反萃率为45.84%,但锰的反萃率均为零。该研究为电解金属锰合格液中锰镁的萃取分离提供了必要的理论依据,对我国电解金属锰生产工艺的完善有较大的促进作用。  相似文献   

13.
通过酸解作业,使黑钨精矿中的钨钪得到有效分离。适宜的酸解条件为:黑钨精矿粒度-48μm、盐酸浓度9mol/L、酸解浸出时间5h,在上述酸浸条件下钪的浸出率达到95%以上。在萃取剂组成为12%P204+煤油(O/A=1/5)+4%仲辛醇,经过一级萃取,萃取时间5min,酸解液中钪的萃取率达到95%以上,且钪和铁能较为彻底地分离。通过逆流酸洗除铁可将富钪有机相中的钪进一步富集,用2.5mol/L氢氧化钠对富钪有机相进行一级反萃,相比O/A=5,反萃时间5min,钪反萃率为99.90%。  相似文献   

14.
石煤氧压酸浸液萃钒除铁工艺研究   总被引:8,自引:3,他引:5  
研究了从石煤氧压酸浸液中萃钒除铁的工艺过程,从萃取和反萃的相比、试剂组成、pH值、澄清时间等方面进行了详细试验.研究表明:浸出液经中和还原处理后,采用10%P204+5%TBP+85%煤油萃取钒时.经六级逆流萃取后萃取率为95%以上;负载有机相用15%H2SO4反萃时,经五级逆流反萃后反萃率可达99%以上.经萃取后,浸出液中的钒可富集到37 g·L-1以上,铁可缩减至以O.6 g·L-1以下,反萃水相中钒铁质量比大于60,钒铁分离效果较好.  相似文献   

15.
针对现行的湿法炼锌渣中提取锗的研究现状,采用新型萃取剂HBL101从锌置换渣的高酸浸出液中直接萃取锗,考察了料液酸度、萃取剂体积分数、萃取温度、萃取时间和相比对萃取的影响以及氢氧化钠质量浓度、反萃温度、反萃时间和反萃相比对反萃的影响,并对萃取剂转型条件进行了研究.实验表明:有机相组成为30%HBL101+70%磺化煤油(体积分数)作为萃取剂,料液酸度为113.2 g·L-1H2SO4,其最佳萃取条件为萃取温度25℃,萃取时间20 min,相比O/A=1∶4.经过五级逆流萃取,锗萃取率达到98.57%.负载有机相用150 g·L-1NaOH溶液可选择性反萃锗得到高纯度锗酸钠溶液,其最佳反萃条件为反萃温度25℃,反萃时间25 min,相比O/A=4∶1.经过五级逆流反萃,反萃率可达到98.1%.反萃锗后负载有机相再用200 g·L-1硫酸溶液反萃共萃的铜并转型,控制反萃温度25℃,反萃时间20 min,O/A=2∶1.经过五级逆流反萃,铜反萃率可达到99.5%并完成转型,萃取剂返回使用.   相似文献   

16.
研究了一种新型酸性磷类萃取剂NA萃取中重混合稀土的性能,探讨了萃取过程中有机相的皂化度、有机相组成、混合稀土料液中杂质含量、料液初始p H对新型萃取剂萃取饱和容量的影响以及反萃过程中反萃酸度对反萃性能的影响,同时还探讨了新型萃取剂的损耗率。试验结果表明,控制混合稀土料液浓度与铝浓度比≥222,与铁浓度比≥2543、有机相的皂化度0.64~0.68 mol·L~(-1)、有机相中磺化煤油∶新型萃取剂=1∶1(新型萃取剂浓度为1.45 mol·L~(-1))及混合稀土料液初始p H=1.2的工艺条件下,萃取过程分相效果好,新型萃取剂的饱和容量大于0.20 mol·L~(-1),比传统萃取剂P507的最佳萃取饱和容量高15%~20%左右,新型萃取剂的损耗率为0.42%~0.45%;反萃过程,采用盐酸作为反萃剂,只要控制盐酸浓度为3.0 mol·L~(-1)时,负载有机相的单级反萃率即可达到98%以上;研究结果表明,该新型萃取剂,具有萃取饱和容量大、溶解损失少、循环使用性能好、反萃酸度低的特点,可以大大降低槽体有机积存量、稀土积存量和酸耗量,减少投资成本,改善工作环境,具有广泛的应用前景。  相似文献   

17.
研究了N235从石煤硫酸浸出液中直接萃取钒的工艺参数,考察N235体积分数、萃取时间、萃取温度、相比等对钒萃取率的影响。结果表明,最佳萃取工艺参数为:N235体积分数40%、有机相与水相相比1∶4、25℃萃取6min,钒两级总萃取率为97.82%;以0.8mol/L的碳酸钠溶液为反萃剂、有机相与水相相比3∶1、在25℃反萃6min,钒两级总反萃率大于99%,钒与其他主要杂质元素分离。  相似文献   

18.
针对某低铜高铁料液在萃取过程中存在除铁效果不佳的问题进行了模拟试验和原因分析,考察了萃取段相比V_O/V_A、料液pH、反萃取段相比V_O/V_A和增加洗涤段等工艺条件对铜萃取率和除铁效果的影响。结果表明:采用"一萃一洗一反萃"工艺,在适宜条件下,铜萃取率可达96.15%,负载有机相铁质量浓度降至0.022g/L;采用改进工艺,Mextral 5910H能进一步提高铜萃取率至97.80%,负载有机相铁质量浓度降至0.013g/L,萃取效果更好。  相似文献   

19.
N235萃取镍钼矿硫酸浸出液中钼的研究   总被引:4,自引:0,他引:4  
对N235萃取镍钼矿酸浸液中的钼进行了实验研究,确定了萃取和反萃步骤的最优条件。结果表明,三级逆流萃取率可达99.7%,而一级反萃率可达95.5%,反萃液钼浓度约为100 g/L,整个工艺的金属钼直收率可达98%以上。通过该工艺可实现镍钼矿酸浸液中的镍钼分离,以及钼的富集和部分除杂。  相似文献   

20.
对于镍电镀污泥的硫酸浸出液所回收得到的粗硫酸镍溶液,采用镍皂化的P507萃取剂净化。考察了料液pH、相比、萃取时间、温度对萃取过程的影响,绘制萃取等温线;考察负载有机相中主要杂质离子用不同浓度H2SO4反萃的效果及规律,提出用H2SO4反萃再生有机相的方案。结果表明,以体积含量为10%的P507+磺化煤油的有机相,通过直接皂化的方法制备镍皂有机相, 在皂化率80%、料液pH=2.2、相比VO/VA=1/8、温度30 ℃、时间5 mins条件下,经过6级逆流萃取可以使料液的铁降低到40 mg.L-1左右;对于除铁后料液,在皂化率80%、料液pH=3.3、相比VO/VA=1/8、温度30 ℃、时间5 mins的条件下,经过4级逆流萃取剩余杂质降至深度净化达标范围;负载有机相用4 mol.L-1 H2SO4按VO/VA=5/1、30 ℃、5 min,经过3级逆流反萃可达到再生有机相的目的。反萃水相可返回至电镀污泥浸出工序回用。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号