首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the demonstration of continuous-wave (CW) operation of GaInAs-AlGaAsSb quantum cascade (QC) lasers. By placing a 2.5-/spl mu/m-thick gold layer on both sides of the laser ridge to extract heat from the active region in the lateral direction, together with mounting the device epilayer down, we have achieved CW operation of GaInAs-AlGaAsSb QC lasers composed of 25 stages of active/injection regions. The maximum CW operating temperature of the lasers is 94 K, and the emission wavelength is around /spl lambda//spl sim/4.65 /spl mu/m. For a device with the size of 10/spl times/2000 /spl mu/m/sup 2/, the CW optical output power per facet is 13 mW at 42 K and 4 mW at 94 K. The CW threshold current density is 1.99 kA/cm/sup 2/ at 42 K, and 2.08 kA/cm/sup 2/ at 94 K, respectively.  相似文献   

2.
Pulsed laser action above room temperature at /spl lambda//spl sime/11.3 /spl mu/m has been achieved in quantum cascade devices grown by metal organic vapour phase epitaxy (MOVPE). The emission wavelength (/spl lambda//spl sime/11.3 /spl mu/m) is the longest reported for QC lasers grown with this technique. The peak output power at 77 K is approximately 315 mW, decreasing to /spl sime/100 mW at room temperature. The devices display laser operation up to at least 350 K.  相似文献   

3.
We report an edge-emitting mid-infrared (IR) (/spl lambda/=3.3-3.7 /spl mu/m) "W" laser incorporating an optical-pumping injection cavity (OPIC). The active region of the W-OPIC is sandwiched between two Bragg mirrors that significantly enhance the pump-beam absorptance at /spl lambda//sub pump/=2.098 /spl mu/m. Pulsed experiments demonstrate that besides suppressing the threshold pump intensity, this design enhances the differential power conversion efficiency (e.g., 7.1% per uncoated facet at 220 K) and lowers the internal loss (e.g., 20 cm/sup -1/ at 240 K) compared with all previous optically pumped mid-IR lasers.  相似文献   

4.
Optimized second-harmonic generation (SHG) in quantum cascade (QC) lasers with specially designed active regions is reported. Nonlinear optical cascades of resonantly coupled intersubband transitions with giant second-order nonlinearities were integrated with each QC-laser active region. QC lasers with three-coupled quantum-well (QW) active regions showed up to 2 /spl mu/W of SHG light at 3.75 /spl mu/m wavelength at a fundamental peak power and wavelength of 1 W and 7.5 /spl mu/m, respectively. These lasers resulted in an external linear-to-nonlinear conversion efficiency of up to 1 /spl mu/W/W/sup 2/. An improved 2-QW active region design at fundamental and SHG wavelengths of 9.1 and 4.55 /spl mu/m, respectively, resulted in a 100-fold improved external linear-to-nonlinear power conversion efficiency, i.e. up to 100 /spl mu/W/W/sup 2/. Full theoretical treatment of nonlinear light generation in QC lasers is given, and excellent agreement with the experimental results is obtained. For the best structure, a second-order nonlinear susceptibility of 4.7/spl times/10/sup -5/ esu (2/spl times/10/sup 4/pm/V) is calculated, about two orders of magnitude above conventional nonlinear optical materials and bulk III-V semiconductors.  相似文献   

5.
We report on room-temperature continuous-wave (CW) operation of /spl lambda//spl sim/8.2 /spl mu/m quantum cascade lasers grown by metal-organic chemical vapor deposition without lateral regrowth. The lasers have been processed as double-channel ridge waveguides with thick electroplated gold. CW output power of 5.3 mW is measured at 300 K with a threshold current density of 2.63 kA/cm/sup 2/. The measured gain at room temperature is close to the theoretical design, which enables the lasers to overcome the relatively high waveguide loss.  相似文献   

6.
Electron-beam lithography was used to pattern a second-order photonic-crystal distributed feedback grating onto an antimonide type-II "W" laser emitting at /spl lambda//spl ap/3.7 /spl mu/m. For pulsed optical pumping, the output beam was essentially diffraction-limited up to a stripe width of 150 /spl mu/m, and remained no worse than eight times the diffraction limit for stripes as wide as 600 /spl mu/m. This represents a considerable improvement over all previous mid-infrared semiconductor lasers with such broad stripes.  相似文献   

7.
Antiresonant reflecting optical waveguide (ARROW) techniques are employed in vertical cavity surface emitting lasers (VCSELs) to achieve high-power single-mode emission. Using the effective-index method and fiber mode approximation, the cold-cavity lateral modal behavior for the circular shaped ARROW VCSEL demonstrates significant reduction of radiation loss from that of a single antiguide, while maintaining strong discrimination against high-order modes. The circular-waveguide is created by selective chemical etching and two-step metal-organic chemical vapor deposition growth, with proton implantation used to confine the current injection to the low-index core region. A single-mode CW power of 7.1 mW has been achieved from an 8 /spl mu/m diameter ARROW device (index step /spl Delta/n = 0.05, emission at /spl lambda//sub 0/ = 980 nm) with a far-field FWHM of 10/spl deg/. Larger aperture (12 /spl mu/m) devices exhibit multimode operation at lower drive currents with a maximum single-mode continuous-wave output power of 4.3 mW.  相似文献   

8.
Quantum-cascade distributed-feedback lasers (QCDFB) with a grating close to the active region are reported. Feedback is provided by the grating in a refractive index-dominated coupling scheme. Reliable single-mode emission at /spl lambda//sub cm//spl ap/5.4 /spl mu/m with a side-mode suppression ratio (SMSR) /spl ap/30 dB is observed. The laser is continuously tunable over 40 nm with a coefficient of /spl Delta//spl lambda///spl Delta/T/spl ap/0.37 nm/K in the temperature range from 200 K to 300 K. Comparison with Fabry-Perot QC lasers shows an overall improved performance of QC-DFB lasers.  相似文献   

9.
Diode lasers emitting at 2.26 /spl mu/m, based on the InGaAsSb-AlGaAsSb materials system, are reported. These devices exhibit high internal quantum efficiency of 78% and low threshold current density of 184.5 A/cm/sup 2/ for a 2-mm-long cavity. Output power up to 700 mW (/spl ap/550 mW) has been obtained at 280 K (300 K) in continuous-wave operation with 100 /spl mu/m/spl times/1 mm lasers. These devices have been coated with an antireflection on the output facet and are mounted epilayer down on a copper block. The working temperature was maintained by a thermoelectric Peltier cooling element.  相似文献   

10.
Buried heterostructure quantum cascade lasers emitting at 5.64 /spl mu/m are presented. Continuous-wave (CW) operation has been achieved at -30/spl deg/C for junction down mounted devices with both facets coated. A 750 /spl mu/m-long laser exhibited 3 mW of CW power with a threshold current density of 5.4 kA/cm/sup 2/.  相似文献   

11.
Coupled vertical cavity surface-emitting laser (VCSEL) arrays are an attractive means to increase the coherent output power of VCSELs. Single-mode VCSELs, with output powers greater than 10 mW, would be useful as telecommunication transmitters /spl lambda/=1.3-1.55 /spl mu/m) or sources for optical interconnects. Commercially available single-mode VCSELs, even at shorter wavelengths /spl lambda/=0.85 /spl mu/m), are generally limited to a few milliwatts of output power. The conventional VCSEL structure incorporates a built-in positive-index waveguide, designed to support a single fundamental mode. Promising results in the 3-5 mW range (/spl lambda/=0.85 /spl mu/m) have been obtained from wet-oxidized, positive-index-guided VCSELs with small emission apertures (less than 3.5 /spl mu/m-dia). The small aperture size leads to a high electrical resistance and high current density, which can impact device reliability. By contrast, antiguided VCSEL structures have shown promise for achieving larger aperture single-mode operation. To obtain high single-mode powers with a larger emitting aperture, the use of a negative-index guide (antiguide) is beneficial. This paper discusses antiguided structures and some of their advantages when incorporated in 2-D VCSEL array structures.  相似文献   

12.
Quantum-cascade lasers based on a bound-to-continuum transition and emitting at /spl lambda//spl sim/106 /spl mu/m (2.8 THz) are reported. They produce peak output powers of a few milliwatt and can be operated up to a heatsink temperature of 65 K. The devices demonstrate the feasibility of this technology for frequencies below 3 THz.  相似文献   

13.
Wafer-fused InGaAlAs/AlGaAs vertical cavity surface emitting lasers with InAlGaAs-based tunnel junction injection have shown record high 0.7 mW singlemode output power in the 10-80/spl deg/C temperature range. Single transverse-mode operation with 35 dB sidemode suppression and low divergence beam with 9/spl deg/ half width at half maximum has been measured on devices with 7 /spl mu/m aperture.  相似文献   

14.
The room-temperature pulsed operation of a semiconductor laser emitting at 8.5 /spl mu/m is reported. This device is an optimized vertical transition quantum cascade (QC) laser. At 300 K the peak output power from a single facet is 15 mW, and the current density at threshold is /spl sim/8 kA/cm/sup 2/. The temperature dependence of the threshold current density is described by a high T/sub 0/ (107 K) in the 200-320 K temperature range.  相似文献   

15.
Strain-compensated InGaAsSb-AlGaAsSb quantum-well (QW) lasers emitting near 2.5 /spl mu/m have been grown by solid-source molecular beam epitaxy. The relatively high arsenic composition causing a tensile strain in the Al/sub 0.25/GaAs/sub 0.08/Sb barriers lowers the valence band edge and the hole energy level, leading to an increased hole confinement and improved laser performance. A 60% external differential efficiency in pulsed mode was achieved for 1000-/spl mu/m-long lasers emitting at 2.43 /spl mu/m. A characteristic temperature T/sub 0/ as high as 163 K and a lasing-wavelength temperature dependence of 1.02 nm//spl deg/C were obtained at room temperature. For 2000 /spl times/ 200 /spl mu/m/sup 2/ broad-area three-QW lasers without lateral current confinement, a low pulsed threshold of 275 A/cm/sup 2/ was measured.  相似文献   

16.
High-temperature high-power continuous-wave (CW) operation of high-reflectivity-coated 12-/spl mu/m-wide quantum-cascade lasers emitting at /spl lambda/ = 6 /spl mu/m with a thick electroplated Au top contact layer is reported for different cavity lengths. For a 3-mm-long laser, the CW optical output powers of 381 mW at 293 K and 22 mW at maximum operating temperature of 333 K (60/spl deg/C) are achieved with threshold current densities of 1.93 and 3.09 kA/cm/sup 2/, respectively. At 298 K, the same cavity gives a maximum wall plug efficiency of 3.17% at 1.07 A. An even higher CW optical output power of 424 mW at 293 K is obtained for a 4-mm-long laser and the device also operates up to 332 K with an output power of 14 mW. Thermal resistance is also analyzed at threshold as a function of cavity length.  相似文献   

17.
In this letter, we report the design and operation of multiple-quantum-well distributed Bragg reflectors (MQW DBR) lasers with monolithically integrated external-cavity electroabsorption (EA) modulators without modification of the active region fabricated using only a single growth step. Devices were fabricated with operating wavelengths of 1.06, 1.07, and 1.08 /spl mu/m, which are red-shifted from the material gain peak wavelength (/spl lambda/=1.05 /spl mu/m) by 100, 200, and 300 /spl Aring/, respectively. The /spl lambda/=1.06-/spl mu/m device has a continuous-wave (CW) threshold current of 16 mA and a slope efficiency of 0.09 W/A from the modulator facet, while the /spl lambda/=1.08 /spl mu/m device has a CW threshold current of 33 mA and a slope efficiency of 0.40 W/A from the modulator facet. The /spl lambda/=1.06-, 1.07-, and 1.08-/spl mu/m device exhibits an extinction ratio of /spl ges/20 dB at a modulator bias of 1.0, 1.4, and 2 V, respectively.  相似文献   

18.
High-power terahertz quantum-cascade lasers   总被引:2,自引:0,他引:2  
Demonstration of quantum-cascade lasers at /spl sim/4.4 THz (/spl lambda//spl sim/68 /spl mu/m), which are measured to emit 248 mW peak power in pulsed mode, and 138 mW continuous-wave power at heatsink temperatures of 10 K, is reported. These lasers are based on a resonant-phonon depopulation scheme, and use a semi-insulating surface-plasmon waveguide.  相似文献   

19.
GaInP/AlGaInP visible lasers based on a longitudinal photonic bandgap crystal waveguide emitting at 646 nm show narrow circular shaped far field pattern. Vertical and lateral beam divergence of about 8/spl deg/ (full width at half maximum) that is independent of injection current is demonstrated. Differential quantum efficiency is up to 85%. Pulsed total optical output power is as high as 20 W for 100 /spl mu/m-wide stripe lasers and 6 W for 20 /spl mu/m-wide stripe lasers. Such values of output optical power are 2.5 higher with respect to ones obtained for the lasers fabricated from the state-of-the-art epiwafers for commercial 650 nm range DVD lasers.  相似文献   

20.
The group refractive index dispersion in ultra-broad-band quantum cascade (QC) lasers has been determined using Fabry-Perot spectra obtained by operating the lasers in continuous wave mode below threshold. In the wavelength range of 5-8 /spl mu/m, the global change of the group refractive index is as small as +8.2 /spl times/ 10/sup -3/ /spl mu/m/sup -1/. Using the method of Hakki and Paoli (1975), the subthreshold gain of the lasers has furthermore been measured as a function of wavelength and current. At the wavelength of best performance, 7.4 /spl mu/m, a modal gain coefficient of 16 cm/spl middot/kA/sup -1/ at threshold and a waveguide loss of 18 cm/sup -1/ have been estimated. The gain evolution confirms an earlier assumption that cross-absorption restricted laser action to above 6 /spl mu/m wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号