首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The erection of horizontally curved steel I-girder bridges tends to be more complex than the erection of straight steel I-girder bridges. The erection of a curved steel I-girder bridge can be further complicated when the cross-frame members and girders are detailed inconsistently in an effort to force bridge components into some desirable geometric condition. Inconsistent detailing involves the intentional specification of cross-frame members that are either too long or too short to align with girder connector plates properly so as to force the girders into a given position, resulting in connection misalignments that must be resolved by applying external forces to the bridge components. The current research investigates the erection of a recently constructed horizontally curved steel I-girder bridge and highlights the fact that practice of inconsistent detailing can lead to very formidable and costly fit-up problems in the field; especially when girder sizes are large.  相似文献   

2.
Special attention is required in the construction of horizontally curved steel I-girder bridges due to coupled effects of primary bending and torsional forces. Misguided steel erection procedures can lead to undesired stresses, deflections, and rotations in these types of bridges, resulting in a structure with misaligned geometry and in an unknown state of stress. Further complicating the issue, little guidance related to curved bridge behavior during construction is provided by current design codes, leaving contractors and designers uncertain as to the most appropriate steps to take to achieve an efficient, safe structure. A horizontally curved, six-span steel I-girder bridge located in central Pennsylvania that experienced severe geometric misalignments and fit-up complications during steel erection was studied to investigate curved girder behavior during construction. The structure was monitored during corrective procedures intended to realign it with the design geometry, and field data used to calibrate a three-dimensional computer model generated via SAP2000. The techniques and assumptions proven in the calibration process were used to create a numerical model of a three-span continuous portion of the bridge, which was the subject of several analyses exploring the effects erection sequencing, implementation of upper lateral bracing, and use of temporary supports had on the final deformed shape of the curved superstructure. Findings indicated that using paired girder erection produced smaller radial and vertical deformations than single girder techniques for this structure, and that the use of lateral bracing between the fascia and adjacent interior girders and the placement of temporary shoring towers at span quarter points are both effective means of further reducing levels of deflection.  相似文献   

3.
A series of studies on an experimental, full-scale curved steel bridge structure during erection are discussed. The work was part of the Federal Highway Administration’s curved steel bridge research project (CSBRP). The CSBRP is intended to improve the understanding of curved bridge behavior and to develop more rational design guidelines. The main purpose of the studies reported herein was to assess the capability of analytical tools for predicting response during erection. Nine erection studies, examining six different framing plans, are presented. The framing plans are not necessarily representative of curved bridge subassemblies as they would be erected in the field; however, they represent a variety of conditions that would test the robustness of analysis tools and assess the importance of erection sequence on initial stresses in a curved girder bridge. The simply supported, three I-girder system used for the tests is described and methods for reducing and examining the data are discussed. Comparisons between experimental and analytical results demonstrate that analysis tools can predict loads and deformations during construction. Comparison to the V-load method indicates that it predicts stresses in exterior girders well, but can underpredict them for interior girders.  相似文献   

4.
This paper focuses on levels of live-load lateral bending moment (bimoment) distribution in a horizontally curved steel I-girder bridge. Work centered primarily on the examination of (1) data from field testing of an in-service horizontally curved steel I-girder bridge and (2) results from a three-dimensional numerical model. Experimental data sets were used for calibration of the numerical model and the calibrated model was then used to examine the accuracy of lateral bending distribution factor equations presented in the 1993 Edition of the (AASHTO) Guide Specifications for Horizontally Curved Bridges. It is of interest to examine these equations for potential use in preliminary design even though they have been eliminated during recent AASHTO specification modifications that addressed curved bridge analysis, the 2005 Interims to the AASHTO LRFD Bridge Design Specifications. In addition, they were developed using idealized computer models and small-scale laboratory testing with very few field tests of in-service full-scale curved steel bridges conducted to support or refute their use. Results from such experimental and numerical studies are presented and discussed herein.  相似文献   

5.
The purpose of this paper is to develop new formulas for live load distribution in horizontally curved steel I-girder bridges. The formulas are developed by utilizing computer model results for a number of different horizontally curved steel I-girder bridges. The bridges used in this study are modeled as generalized grillage beam systems composed of horizontally curved beam elements for steel girders and substructure elements for lateral wind bracing and cross frames which consist of truss elements. Warping torsion is taken into consideration in the analysis. The effect of numerous parameters, including radius of curvature, girder spacing, overhang, etc., on the load distribution are studied. Key parameters affecting live load distribution are identified and simplified formulas are developed to predict positive moment, negative moment, and shear distribution for one-lane and multiple-lane loading. Comparisons of the formulas with finite element method and grillage analysis show that the proposed formulas have more accurate results than the various available American Association of State Highway and Transportation Officials specifications. The formulas developed in this study will assist bridge engineers and researchers in predicting the actual live load distribution in horizontally curved steel I-girder bridges.  相似文献   

6.
Steel curved I-girder bridge systems may be more susceptible to instability during construction than bridges constructed of straight I-girders. The primary goal of this research is to study the behavior of the steel superstructure of a curved steel I-girder bridge system during all phases of construction and to ascertain whether the actual stresses in the bridge are represented well by linear elastic analysis software developed for this project and typical of that used for design. Sixty vibrating wire strain gauges were applied to a two-span, four-girder bridge, and elevation measurements were taken by a surveyor's level. The resulting stresses and deflections were compared to computed results for the full construction sequence of the bridge as well as for live loading from up to nine 50-kip trucks. The analyses correlated well with the field measurements, especially for the primary flexural stresses. Stresses due to lateral bending and restraint of warping induced in the girders and the stresses in the cross frames were more erratic but generally showed reasonable correlation. In addition, it is shown that, for the magnitude of live load applied to the bridge, analyses in which composite behavior is assumed in the negative moment region yield better correlation than analyses in which just the bare steel girders are used (no shear connectors were used on the bridge in the negative moment region). It is concluded that the curved girder analysis software captures the general behavior well for these types of curved girder bridge systems at or below the service load level, and that the stresses in these bridges may be relatively low if their design is controlled largely by stiffness.  相似文献   

7.
This paper presents an evaluation of the influence of AASHTO live-load deflection criteria on the performance of steel I-girder bridges. Background information is provided regarding previous research studies focused at understanding the role and suitability of live-load deflection limits on steel bridge design. Further, the results of an extensive survey of state transportation departments regarding the use of these limitations is provided. The results of a computer analysis package developed to evaluate the variability of these survey results are also presented. Last, a series of analyses of existing steel bridges conducted to examine the effects of the live-load deflection limits on typical and damaged bridges to determine the role that these limits play in overall superstructure performance is provided.  相似文献   

8.
Horizontally curved steel I-girder bridge systems tend to deflect and rotate out of plane under the action of gravity. Oftentimes, this response will lead to a condition wherein the subsequent girder cross-sectional orientation is one where the web is out of plumb. Currently, there exists little guidance concerning what effect this web out of plumbness has on structural performance. As a result of this lack of guidance from design specifications, there is tendency within current practice to work to alleviate the out of plumb condition through various detailing and erection strategies, since the performance implications of its presence within the structure are poorly understood. The present research employs nonlinear finite-element modeling strategies to study the various effects that web out of plumbness has on flange tip stresses, vertical and lateral deflections, cross-sectional distortion, and cross-frame demands. The focus of the present work is the construction stage, and thus steel dead load is the governing loading condition treated. Web out of plumbness magnitudes of up to 5° are considered.  相似文献   

9.
The first modern metal cantilever bridge in the United States, using erection methods that were to be utilized in most future cantilever bridges, was by C. C. Schneider across the Niagara Gorge in 1883. The Niagara, saw in order, John Roebling’s Railroad Suspension Bridge, Samuel Keefer’s Honeymoon Suspension Bridge, Edward Serrell’s Lewiston-Queenston Suspension Bridge, Schneider’s cantilever, Leffert Buck’s arch bridge at the falls as well as Buck’s arch built under Roebling’s suspension bridge. Schneider’s bridge had a useful life of over 40 years during a period when rolling stock on the railroads was increasing rapidly. The speed of erection of a new style bridge coupled with its performance makes it one of the most innovative and significant bridges built in the world at the time.  相似文献   

10.
11.
The Ilsun Bridge is the world’s longest (801?m in total length) and widest (30.9?m in maximum width) prestressed concrete box girder bridge incorporating a corrugated steel web. This bridge has fourteen spans, twelve of which were erected using an incremental launching method, a method that is rarely applied in this type of bridge. To verify the construction safety of the Ilsun Bridge, this investigation focuses on the span-to-depth ratio, buckling shear stress of the corrugated steel webs, optimization of the length of the steel launching nose, detailed construction stage analysis, and the stress level endured by the corrugated steel webs during the launching process. The span-to-depth ratio of the Ilsun Bridge was found to be well-designed, using a conservative corrugated steel web design. Further, our investigation revealed that the conventional nose-deck interaction equation was not suitable for corrugated steel web bridges. As a result, a detailed construction stage analysis and measurements of this bridge was performed to examine stress levels and ensure safety during the erection process. The results revealed that there are essential design issues that should be considered when designing prestressed concrete box girder bridges with corrugated steel webs and that, when constructing them, the incremental launching method should be used.  相似文献   

12.
13.
The first prestressed segmental concrete bridge in the United States opened to traffic was a small bridge in Madison County, Tennessee. The bridge was constructed using prestressed concrete segments and was opened to traffic in October 1950. Prestressed concrete beams were placed side by side to form the superstructure of the bridge. The construction of this bridge and several other similar prestressed concrete bridges are described herein. The existing condition of eleven prestressed concrete bridges remaining in Tennessee is given. Only minor spalling, leaching, and horizontal cracking are present in the superstructure after fifty years of service. Many of the design features introduced in this design can be found in today’s modern precast segmental concrete bridges.  相似文献   

14.
Horizontally curved, steel girder bridges are often used in our modern infrastructural system. The curve in the bridge allows for a smother transition for traffic, which creates better road travel. However, some of the disadvantages of horizontally curved bridges are that they are more difficult to analyze, design, and sometimes construct in comparison to conventional straight bridges. This study focuses on a three-span, curved steel I-girder bridge which was tested under three boundary condition states to determine it’s response to live load. The measured live-load strains were used to calibrate a finite-element model. The finite-element design moments and distribution factors for the three condition states were then compared with the results based on the V-load method. These different boundary conditions provided the researchers a unique opportunity to evaluate the impact that these changes had on the bridges behavior. It was found that while the V-load method produced positive bending moments that were close to the finite-element moments for some of the girders, this was a result of the V-load moment being unconservative and the distribution factor being conservative.  相似文献   

15.
Modern highway bridges are often subject to tight geometric restrictions and, in many cases, must be built in curved alignment. These bridges may have a cross section in the form of a multiple steel box girder composite with a concrete deck slab. This type of cross section is one of the most suitable for resisting the torsional, distortional, and warping effects induced by the bridge’s curvature. Current design practice in North America does not specifically deal with shear distribution in horizontally curved composite multiple steel box girder bridges. In this paper an extensive parametric study, using an experimentally calibrated finite-element model, is presented, in which simply supported straight and curved prototype bridges are analyzed to determine their shear distribution characteristics under dead load and under AASHTO live loadings. The parameters considered in this study are span length, number of steel boxes, number of traffic lanes, bridge aspect ratio, degree of curvature, and number and stiffness of cross bracings and of top-chord systems. Results from tests on five box girder bridge models verify the finite-element model. Based on the results from the parametric study simple empirical formulas for maximum shears (reactions) are developed that are suitable for the design office. A comparison is made with AASHTO and CHBDC formulas for straight bridges. An illustrative example of the design is presented.  相似文献   

16.
This paper presents a study of the skewness effect on live load reactions at the piers of continuous bridges. Two prestressed concrete I-beam bridges and one steel I-girder bridge were selected for the study. To evaluate the skew effect, the skew angle of the bridges was varied from 0 to 60°. Live load reaction at support and shear at the beam ends of the selected bridges were determined using finite-element analysis. The comparison of the distribution factors of live load reactions and shear revealed that the distribution factor of reaction at piers was higher than that of shear at beam ends near the same support. The increase in the reaction distribution factor was more significant than that in the shear distribution factor in the interior beam line when the skew angle was greater than 30°. The LRFD shear equations and the Lever rule method could conservatively predict live load reaction distribution for piers in exterior beam lines but underestimate live load reaction distribution in interior beam lines. It is recommended that more research be performed for the distribution factor of live load reaction to quantify the responses.  相似文献   

17.
Continuity diaphragms used in prestressed girder bridges on skewed bents have caused difficulties in detailing and construction. The results of the field verification for the effectiveness of continuity diaphragms for skewed, continuous, and prestressed concrete girder bridges are presented. The current design concept and bridge parameters that were considered include skew angle and the ratio of beam spacing to span (aspect ratio). A prestressed concrete bridge with continuity diaphragms and a skewed angle of 48° was selected for full-scale test by a team of engineers from Louisiana Department of Transportation and Development and the Federal Highway Administration. The live load tests performed with a comprehensive instrumentation plan provided a fundamental understanding of the load transfer mechanism through these diaphragms. The findings indicated that the effects of the continuity diaphragms were negligible and they can be eliminated. The superstructure of the bridge could be designed with link slab. Thus, the bridge deck would provide the continuity over the support, improve the riding quality, enhance the structural redundancy, and reduce the expansion joint installation and maintenance costs.  相似文献   

18.
Overheight vehicle collisions can cause major damage to bridges. To address the issue of limited vertical clearance heights and reduce the likelihood of impact damage, the Georgia Department of Transportation has implemented a program to elevate major highway bridges using very short columns referred to as steel pedestals. The process to elevate the bridges and install the steel pedestals is cost effective and efficient, resulting in minimum disruption to highway traffic. However, in practice, these pedestals are not detailed to provide end fixity, so they add considerable flexibility to the superstructure supports and potentially make the bridge more susceptible to instability and damage from seismic loads. Therefore, there is a need to evaluate how these steel pedestals will perform under the low-to-moderate earthquakes expected in this region. A full-scale 12.2?m (40?ft) dual steel girder simply supported bridge elevated with 500?mm (19?in.) and 850?mm (33?1/2?in.) steel pedestals is constructed based on typical field procedures. The full-scale bridge specimen is subjected to quasistatic unidirectional reversed cyclic loads to determine the strength and deformation capacity of the steel pedestals and overall system performance. The kinematics, mechanisms, and load–displacement hysteretic relationships of the bridge steel pedestals and its components are presented. Results show that the steel pedestals undergo kinematic rigid body motion, dissipate energy, and demonstrate reasonable deformation and strength capacities when subjected to quasistatic, reversed cyclic loads.  相似文献   

19.
Past research has been conducted on the behavior of horizontally curved girders by testing scaled models and full-scale laboratory bridges and by analyzing numerical models. Current design specifications are based on this past research; however, little field data of in-service bridges exist to support the findings of the past research on which the current design criteria are based. The purpose of the present study was to gather field response data from three in-service, curved, steel I-girder bridges to determine behavior when subjected to a test truck and normal truck traffic. Transverse bending distribution factors and dynamic load allowance were calculated from the data collected. Numerical grillage models of the three bridges were developed to determine if a simple numerical model will accurately predict actual field measured transverse bending distribution, deflections, and cross-frame and diaphragm shear forces. The present study found that AASHTO specifications are conservative for both dynamic load allowance and transverse bending moment distribution. The grillage models were found to predict with reasonable accuracy the behavior of a curved I-girder bridge.  相似文献   

20.
This paper presents a method for determining the dynamic impact factors for horizontally curved composite single- or multicell box girder bridges under AASHTO truck loading. The bridges are modeled as three-dimensional structures using commercially available software. The vehicle is idealized as a pair of concentrated forces, with no mass, traveling in two circumferential paths parallel to the curved centerline of bridges. An extensive parametric study is conducted, in which over 215 curved composite box girder bridge prototypes are analyzed. The key parameters considered in this study are: Number of cells, number of lanes, degree of curvature, arc span length, slope of the outer steel webs, number and area of bracing and top chord systems, and truck(s) speed and truck(s) positioning. Based on the data generated from the parametric study, expressions for dynamic impact factors for longitudinal moment, reaction, and deflection are proposed as function of the ratio of the arc span length to the radius of curvature. The results from this study would enable bridge engineers to design horizontally curved composite box girder bridges more reliably and economically. Furthermore, the results can be used to potentially increase the live-load capacity of existing bridges to prevent posting or closing of the bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号