首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fiber-reinforced polymer (FRP) composite bridge deck panels are high-strength, corrosion resistant, weather resistant, etc., making them attractive for use in new construction or retrofit of existing bridges. This study evaluated the force-deformation responses of FRP composite bridge deck panels under AASHTO MS 22.5 (HS25) truck wheel load and up to failure. Tests were conducted on 16 FRP composite deck panels and four reinforced concrete conventional deck panels. The test results of FRP composite deck panels were compared with the flexural, shear, and deflection performance criteria per Ohio Department of Transportation specifications, and with the test results of reinforced concrete deck panels. The flexural and shear rigidities of FRP composite deck panels were calculated. The response of all panels under service load, factored load, cyclic loading, and the mode of failure were reported. The tested bridge deck panels satisfied the performance criteria. The safety factor against failure varies from 3 to 8.  相似文献   

2.
Since bridge deck slabs directly sustain repeated moving wheel loads, they are one of the most bridge elements susceptible to fatigue failure. Recently, glass fiber-reinforced polymer (FRP) composites have been widely used as internal reinforcement for concrete bridge deck slabs as they are less expensive compared to the other kinds of FRPs (carbon and aramid). However, there is still a lack of information on the performance of FRP–reinforced concrete elements subjected to cyclic fatigue loading. This research is designed to investigate the fatigue behavior and fatigue life of concrete bridge deck slabs reinforced with glass FRP bars. A total of five full-scale deck slabs were constructed and tested under concentrated cyclic loading until failure. Different reinforcement types (steel and glass FRP), ratios, and configurations were used. Different schemes of cyclic loading (accelerated variable amplitude fatigue loading) were applied. Results are presented in terms of deflections, strains in concrete and FRP bars, and crack widths at different levels of cyclic loading. The results showed the superior fatigue performance and longer fatigue life of concrete bridge deck slabs reinforced with glass FRP composite bars.  相似文献   

3.
An existing mountable safety barrier system, previously crash tested successfully on a wood bridge deck, was evaluated for use on a fiber reinforced plastic (FRP) bridge deck. In an attempt to avoid expensive full-scale crash testing, components of the existing system were evaluated using worst case conditions on two dynamic bogie crash tests and a series of computer simulations using nonlinear finite-element analysis. Simulation results closely approximated the physical results, with both displaying similar deformation, damage, and force levels. Both testing and simulation demonstrated that the barrier should function sufficiently if used on the FRP deck system. Further, the development of an accurate model makes it possible to evaluate the potential success of the existing system for use on other bridge decks. As an example, a more rigid bridge deck, similar to reinforced concrete, was evaluated. Results showed that due to the stiffer deck, more of the impact energy must be absorbed by the posts and attachment hardware, resulting in significantly more deformation than when used on the flexible FRP deck.  相似文献   

4.
We examine here the replacement of a deteriorated concrete deck in the historic Hawthorne Street Bridge in Covington, Va. with a lightweight fiber-reinforced polymer (FRP) deck system (adhesively bonded pultruded tube and plate assembly) to increase the load rating of the bridge. To explore construction feasibility, serviceability, and durability of the proposed deck system, a two-bay section (9.45 by 6.7?m) of the bridge has been constructed and tested under different probable loading scenarios. Experimental results show that the response of the deck is linear elastic with no evidence of deterioration at service load level (HS-20). From global behavior of the bridge superstructure (experimental data and finite- element analysis), degree of composite action, and load distribution factors are determined. The lowest failure load (93.6?kips or 418.1?kN) is about 4.5 times the design load (21.3?kips or 94?kN), including dynamic allowance at HS-20. The failure mode is consistent in all loading conditions and observed to be localized under the loading patch at the top plate and top flange of the tube. In addition to global performance, local deformation behavior is also investigated using finite-element simulation. Local analysis suggests that local effects are significant and should be incorporated in design criteria. Based on parametric studies on geometric (thickness of deck components) and material variables (the degree of orthotropy in pultruded tube), a proposed framework for the sizing and material selection of cellular FRP decks is presented for future development of design guidelines for composite deck structures.  相似文献   

5.
This paper addresses the laboratory and field performance of multicellular fiber-reinforced polymer (FRP) composite bridge deck systems produced from adhesively bonded pultrusions. Two methods of deck contact loading were examined: a steel patch dimensioned according to the AASHTO Bridge Design Specifications, and a simulated tire patch constructed from an actual truck tire reinforced with silicon rubber. Under these conditions, deck stiffness, strength, and failure characteristics of the cellular FRP decks were examined. The simulated tire loading was shown to develop greater global deflections given the same static load. The failure mode is localized and dominated by transverse bending failure of the composites under the simulated tire loading as opposed to punching shear for the AASHTO recommended patch load. A field testing facility was designed and constructed in which FRP decks were installed, tested, and monitored to study the decks’ in-service field performance. No significant loss of deck capacity was observed after more than one year of field service. However, it was shown that unsupported edges (or free edges) are undesirable due to transitional stiffness from approach to the unsupported deck edge.  相似文献   

6.
The design and construction of bridge systems with long-term durability and low maintenance requirements is a significant challenge for bridge engineers. One possible solution to this challenge could be through the use of new materials, e.g., fiber-reinforced polymer (FRP) composites, with traditional materials that are arranged as an innovative hybrid structural system where the FRP serves as a load-carrying constituent and a protective cover for the concrete. This paper presents the results of an experimental investigation designed to evaluate the performance of a 3/4 scale hybrid FRP-concrete (HFRPC) bridge deck and composite connection under sustained and repeated (fatigue) loading. In addition, following the sustained-load and fatigue portions of the experimental study, destructive testing was performed to determine the first strength-based limit state of the hybrid deck. Results from the sustained-load and fatigue testing suggest that the HFRPC deck system might be a viable alternative to traditional cast-in-place reinforced concrete decks showing no global creep behavior and no degradation in stiffness or composite action between the deck and steel girders after 2 million cycles of dynamic loading with a peak load of 1.26 times the scaled tandem load (TL). Furthermore, the ultimate strength test showed that the deck failed prior to the global superstructure at a load approximately six times the scaled TL.  相似文献   

7.
The research presented in this paper evaluates the flexural performance of bridge deck panels reinforced with 2D fiber-reinforced polymer (FRP) grids. Two different FRP grids were investigated, one reinforced with a hybrid of glass and carbon fibers and a second grid reinforced with carbon fibers only. Laboratory measured load-deflection, load-strain (reinforcement and concrete), cracking, and failure behavior are presented in detail. Conclusions regarding failure mode, limit-state strength, serviceability, and deflection compatibility relative to AASHTO mandated criteria are reported. Test results indicate that bridge decks reinforced with FRP grids will be controlled by serviceability limit state and not limit-state ultimate strength. The low axial stiffness of FRP results in large service load flexural deflections and reduced shear strength. In as much as serviceability limits design, overreinforcement is recommended to control deflection violation. Consequently, limit-state flexural strength will be compression controlled for which reduced service stresses or ACI unified compression failure strength reduction factors are recommended.  相似文献   

8.
In addition to their high strength and light weight, fiber-reinforced polymer (FRP) composite reinforcing bars offer corrosion resistance, making them a promising alternative to traditional steel reinforcing bars in concrete bridge decks. FRP reinforcement has been used in several bridge decks recently constructed in North America. The Morristown Bridge, which is located in Vermont, United States, is a single span steel girder bridge with integral abutments spanning 43.90 m. The deck is a 230 mm thick concrete continuous slab over girders spaced at 2.36 m. The entire concrete deck slab was reinforced with glass FRP (GFRP) bars in two identical layers at the top and the bottom. The bridge is well instrumented at critical locations for internal temperature and strain data collection with fiber-optic sensors. The bridge was tested for service performance using standard truck loads. The construction procedure and field test results under actual service conditions revealed that GFRP rebar provides very good and promising performance.  相似文献   

9.
This paper presents results of an evaluation of the fatigue performance of a novel steel-free fiber-reinforced polymer (FRP)–concrete modular bridge deck system consisting of wet layup FRP–concrete deck panels which serve as both formwork and flexural reinforcement for the steel-free concrete slab cast on top. A two-span continuous deck specimen was subjected to a total of 2.36 million cycles of load simulating an AASHTO HS20 design truck with impact at low and high magnitudes. Quasistatic load tests were conducted both before initiation of fatigue cycling and after predetermined numbers of cycles to evaluate the system response. No significant stiffness degradation was observed during the first 2 million cycles of fatigue service load. A level of degradation was observed during subsequent testing at higher magnitudes of fatigue load. A fairly elastic and stable response was obtained from the system under fatigue service load with little residual displacement. The system satisfied both strength and serviceability limit states with respect to the code requirements for crack width and deflection.  相似文献   

10.
Fiber reinforced polymer (FRP) composite bridge decks are gaining the attention of bridge owners because of their light self-weight, corrosion resistance, and ease of installation. Constructed Facilities Center at West Virginia University working with the Federal Highway Administration and West Virginia Department of Transportation has developed three different FRP decking systems and installed several FRP deck bridges in West Virginia. These FRP bridge decks are lighter in weight than comparable concrete systems and therefore their dynamic performance is equally as important as their static performance. In the current study dynamic tests were performed on three FRP deck bridges, namely, Katy Truss Bridge, Market Street Bridge, and Laurel Lick Bridge, in the state of West Virginia. The dynamic response parameters evaluated for the three bridges include dynamic load allowance (DLA) factors, natural frequencies, damping ratios, and deck accelerations caused by moving test trucks. It was found that the DLA factors for Katy Truss and Market Street bridges are within the AASHTO 1998 LRFD specifications, but the deck accelerations were found to be high for both these bridges. DLA factors for Laurel Lick bridge were found to be as high as 93% against the typical design value of 33%; however absolute deck stress induced by vehicle loads is less than 10% of the deck ultimate stress.  相似文献   

11.
Fiber-reinforced polymer (FRP) composites are increasingly being used in bridge deck applications. However, there are currently only fledgling standards to design and characterize FRP deck systems. One area that should be addressed is the loading method for the FRP deck. It has been observed that the type of loading patch greatly influences the failure mode of a cellular FRP deck. The contact pressure distribution of a real truck loading is nonuniform with more concentration near the center of the contact area as a result of the conformable contact mechanics. Conversely, the conventional rectangular steel patch on a FRP deck act like a rigid flat punch and produces stress concentration near the edges. A proposed simulated tire patch has been examined for loading a cellular FRP deck with the load distribution characterized by a pressure sensitive film sensor and three-dimensional contact analysis using ANSYS. A loading profile is proposed as a design tool for analyzing FRP deck systems for strength and durability. Local top surface strains and displacements of the cellular FRP deck are found to be higher with proposed loading profile compared to those for the conventional uniformly distributed loading. Parametric studies on the deck geometry show that the global displacement criterion used for characterizing bridge deck is inadequate for a cellular FRP deck and that the local effects must be considered.  相似文献   

12.
Innovative fiber-reinforced polymer (FRP) composite highway bridge deck systems are gradually gaining acceptance in replacing damaged/deteriorated concrete and timber decks. FRP bridge decks can be designed to meet the American Association of State Highway and Transportation Officials (AASHTO) HS-25 load requirements. Because a rather complex sub- and superstructure system is used to support the FRP deck, it is important to include the entire system in analyzing the deck behavior and performance. In this paper, we will present a finite-element analysis (FEA) that is able to consider the structural complexity of the entire bridge system and the material complexity of an FRP sandwich deck. The FEA is constructed using a two-step analysis approach. The first step is to analyze the global behavior of the entire bridge under the AASHTO HS-25 loading. The next step is to analyze the local behavior of the FRP deck with appropriate load and boundary conditions determined from the first step. For the latter, a layered FEA module is proposed to compute the internal stresses and deformations of the FRP sandwich deck. This approach produces predictions that are in good agreement with experimental measurements.  相似文献   

13.
No appropriate provisions from either AASHTO Standard (2002) or AASHTO LRFD (2004) bridge design specifications are available for the design of fiber-reinforced polymer (FRP)-deck-on-steel-superstructure bridges. In this research, a parametric study using the finite-element method (FEM) is conducted to examine two design issues concerning the design of FRP-deck-on-steel-superstructure bridges, namely deck relative deflection and load distribution factor (LDF). Results show that the strip method specified in AASHTO LRFD specification as an approximate method of analysis, can also be applied to FRP decks as a practical method. However, different strip width equations have to be determined by either FEM or experimental methods for different types of FRP decks. In this study, one such equation has been derived for the Strongwell deck. In addition, both FEM results and experimental measurements show that the AASHTO LDF equations for glued laminated timber decks on steel stringers provide good estimations of LDF for FRP-deck-on-steel-superstructure bridges. Finally, it is found that the lever rule can be used as an appropriately conservative design method to predict the LDF of FRP-deck-on-steel-superstructure bridges.  相似文献   

14.
The application of fiber-reinforced composites (FRP) is gaining momentum as an alternative material for bridge replacement, repair, and rehabilitation. While a number of states now use FRP, a lack of standards, codes, and performance data for FRP bridge decks has resulted in the use of FRP technology not being widely accepted. This paper presents the performance results, based on acoustic emission (AE), of six full-scale glass FRP bridge deck panels with nominal cross-sectional depths varying from 152 mm (6 in.) to 800 mm (30 in.). The objective was to develop for use during in-service field inspections an AE monitoring strategy that will determine the structural performance of the deck. As such, the characterization of damage, e.g., fiber breakage, matrix cracking, and delamination, was part of the investigated criteria and the contributing factors for identification of a monitoring strategy. Although some factors were determined to be associated with the performance evaluation of the structural integrity of the decks, further investigation is needed.  相似文献   

15.
Fire performance of steel structures is highly dependent on the effectiveness of applied fire insulation. However, insulation materials are susceptible to damage under extreme loading events. A state-of-the-art review on the role of insulation damage on fire resistance of steel structures is presented. Parametric studies on a six-story steel-framed building were carried out to illustrate the effect of insulation damage on fire response of a steel structure. In the analysis, realistic fire scenarios, loading, and failure criteria were taken into consideration. Analysis results indicate that the fire resistance of a steel-framed structure is significantly influenced by the extent of insulation loss, type of fire scenario, and level of lateral load. Insulation damage causes faster deterioration in the structural response of framed buildings under the combined effect of fire and lateral loading. The need for accounting for any insulation damage, arising under extreme loading events, in fire design of steel-framed structures is highlighted, and a performance-based design strategy incorporating fire resistance analysis is discussed.  相似文献   

16.
Currently within the military there is a need for a universal light-weight bridge deck system capable of supporting extreme loads over a wide temperature range. This research presents the development, testing, and analysis of five different fiber-reinforced polymer (FRP) webbed core deck panels. The performance of the FRP webbed decks are compared with an existing aluminum deck and with a baseline balsa core system, which has previously been tested as part of the development of the composite army bridge for the US Army. The study shows that for one-way bending, the FRP webbed core can exceed the shear strength of the baseline balsa core by a factor of 3.2 at a core’s density, which is 28% lighter than the balsa baseline. In addition, weight savings in excess of 30% are shown for using FRP decking in place of conventional aluminum decking. Based on test results and finite-element analysis, the failure modes of the different FRP webbed cores are discussed and design recommendations for FRP webbed core decks are provided.  相似文献   

17.
A fiber-reinforced polymer (FRP) composite cellular deck system was used to rehabilitate a historical cast iron thru-truss structure (Hawthorne St. Bridge in Covington, Va.). The most important characteristic of this application is reduction in self-weight, which raises the live load-carrying capacity of the bridge by replacing the existing concrete deck with a FRP deck. This bridge is designed to HL-93 load and has a 22.86?m clear span with a roadway width of 6.71?m. The panel-to-panel connections were accomplished using full width, adhesively (structural urethane adhesive) bonded tongue and groove splices with scarfed edges. To ensure proper construction, serviceability, and strength of the splice, a full-scale two-bay section of the bridge with three adhesively bonded panel-to-panel connections was constructed and tested in the Structures Laboratory at Virginia Tech. Test results showed that no crack initiated in the joints under service load and no significant change in stiffness or strength of the joint occurred after 3,000,000 cycles of fatigue loading. The proposed adhesive bonding technique was installed in the bridge in August 2006.  相似文献   

18.
This paper presents the development of a numerical model for evaluating the performance of fiber-reinforced polymer (FRP)-strengthened RC beams under fire conditions. The model is based on a macroscopic finite-element approach and utilizes moment-curvature relationships to trace the response of insulated FRP-strengthened RC beams from linear elastic stage to collapse under any given fire exposure and loading scenarios. In the analysis, high temperature properties of constitutive materials, load and restraint conditions, material and geometric nonlinearity are accounted for, and a realistic failure criterion is applied to evaluate the failure of the beams. The model is validated against fire test data on FRP-strengthened RC beams and is applied to study the effect of FRP-strengthening, insulation scheme, and failure criterion on the fire response of FRP-strengthened RC beams. Results from the analysis indicate that FRP-strengthened RC beams should be protected with supplemental fire insulation to satisfy fire resistance requirements. A case study is presented to illustrate the application of the model for optimizing the fire insulation scheme to achieve required fire resistance in FRP-strengthened concrete beams.  相似文献   

19.
A fiber-reinforced polymer (FRP) deck-to-girder connection was evaluated for fatigue resistance and residual capacity in the transverse direction. The connection consisted of three shear studs cast into a trapezoidal cell of a FRP sandwich deck. Steel spirals were positioned around each shear stud to aid in grout confinement. Test fixturing consisted of multiple girders and tie downs to induce realistic loading of the connection due to wheel loads. The connection was fatigued according to AASHTO LRFD Specifications for 10.5?million?cycles (75?year design life) and tested for residual capacity. The connection survived fatigue testing without failure. The haunch exhibited minimal debonding and cracking. Connection capacity after one lifetime of fatigue cycles exceeded strength limit state requirements.  相似文献   

20.
Fiber-reinforced polymer (FRP) composites, especially lightweight sandwich structures, are rapidly finding their way into civil infrastructure application. FRP composite panels are particularly attractive as bridge deck systems due to their high strength, low density, and durability, which are of importance to the bridge industry. Most of the vast amount of durability data for FRP has been generated for aerospace and automotive applications, which involve very different service conditions than civil infrastructure. For civil engineering applications, it is essential to examine the durability performance of FRP materials under weathering conditions. The ultimate goal of this research is to develop a reliable framework for durability assessment of FRP decks, including laboratory testing procedure and finite-element simulation capability. Such a framework should be applicable to all types of FRP deck construction. In this paper, specimens of typical FRP bridge deck skin materials are subjected to freeze-thaw cycling between 4.4 and ?17.8°C in media of dry air, distilled water, and saltwater, and constant freeze at ?17.8°C . The selected deck is used as an example for demonstration purposes. In addition, selected specimens are subjected to simultaneous environmental exposure conditions and sustained loading of 25% ultimate strain. It should be emphasized that most of the environmental conditions reported in the literature produce minor deterioration of a single composite property, and the assessment of such effect on this single property becomes unreliable because of a large property variation. Therefore, in this paper we use multiple mechanical properties as performance indices for damage evaluation. Based on findings from this work, it is concluded that freeze-thaw cycling between 4.4 and ?17.8°C alone and up to 1,250 h and 625 cycles caused very insignificant or no change in the flexural strength, storage modulus, and loss factor of the FRP specimens conditioned in dry air, distilled water, and saltwater. Small reductions in storage modulus (about 1% or less) were observed when specimens were prestrained and subjected to 250 freeze-thaw cycles in distilled water and saltwater. Changes in flexural strength were statistically insignificant, since they were within the data scatter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号