首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature difference between the top and bottom of a glass fiber reinforced polymer (GFRP) composite deck, ~ 65°C ( ~ 122°F), is nearly three times that of conventional concrete decks ~ 23°C ( ~ 41°F). Such a large temperature difference is attributed to the relatively lower thermal conductivity of GFRP material. In this study, laboratory tests were conducted on two GFRP bridge deck modules (10.2 and 20.3?cm deep decks) by heating and cooling the top surface of the GFRP deck, while maintaining ambient (room) temperature at the deck bottom. Deflections and strains were recorded on the deck under thermal loads. Theoretical results (using macro approach, Navier-Levy, and FEM) were compared with the laboratory test data. The test data indicated that the GFRP deck exhibited hogging under a positive temperature difference (i.e., Ttop>Tbottom, heating test; Ttop and Tbottom are temperatures at top and bottom of the deck, respectively) and sagging under a negative temperature difference (i.e., Ttop相似文献   

2.
A hybrid concept of composite sandwich panel with hybrid fiber-reinforced polymer (FRP)—steel core was proposed for bridge decks in order to not only improve stiffness and buckling response but also be cost efficient compared to all glass fiber-reinforced polymer (GFRP) decks. The composite sandwich bridge deck system is comprised of wrapped hybrid core of GFRP grid and multiple steel box cells with upper and lower GFRP facings. Its structural performance under static loading was evaluated and compared with the ANSYS finite element predictions. It was found that the presented composite sandwich panel with hybrid FRP-steel core was very efficient for use in bridges. The thickness of the hybrid deck may be decreased by 19% when compared with the all GFRP deck. The failure mode of the proposed hybrid deck was more favorable because of the yielding of the steel tube when compared with that of all GFRP decks.  相似文献   

3.
Filament-Wound Glass Fiber Reinforced Polymer Bridge Deck Modules   总被引:1,自引:0,他引:1  
The demand for the development of efficient and durable bridge decks is a priority for most of the highway authorities worldwide. This paper summarizes the results of an experimental program designed to study the behavior of an innovative glass fiber reinforced polymer (GFRP) bridge deck recently patented in Canada. The deck consisted of a number of triangular filament wound tubes bonded with epoxy resin. GFRP plates were adhered to the top and bottom of the tubes to create one modular unit. The experimental program, described in this paper, discusses the evolution of two generations of the bridge deck. In the first generation, three prototype specimens were tested to failure, and their performance was analyzed. Based on the behavior observed, a second generation of bridge decks was fabricated and tested. The performance was evaluated based on load capacity, mode of failure, deflection at service load level, and strain behavior. All decks tested exceeded the requirements to support HS30 design truck loads specified by AASHTO with a margin of safety. This paper also presents an analytical model, based on Classical Laminate Theory to predict the load-deflection behavior of the FRP decks up to service load level. In all cases the model predicted the deck behavior very well.  相似文献   

4.
The structural response of deteriorated channel beam bridge girders and channel beam bridge decks with and without glass fiber reinforced polymer (GFRP) retrofit is found from design calculations, experimental load testing, and finite element analysis. Two different types of GFRP retrofit materials are investigated including a traditional fabric wrap and a new spray material. The effects of GFRP retrofit on channel beam bridge girder and channel beam bridge structural parameters are summarized and the accuracy of design calculation methods for quantifying structural response of channel beam bridge girders retrofit with GFRP is determined.  相似文献   

5.
As glass fiber-reinforced polymer (GFRP) bridge decks are becoming a feasible alternative to the traditional concrete bridge decks, an innovative methodology to evaluate the in situ conditions are vital to GFRP bridge decks’ full implementation. Ground penetrating radar (GPR) typically performs well in detecting subsurface condition of a structural component with moisture pockets trapped within the material. On the other hand, infrared thermography (IRT) is traditionally known for its ability to detect air pockets within the material. In order to evaluate both nondestructive testing methods’ effectiveness for subsurface condition assessment of GFRP bridge deck, debonds of various sizes were embedded into a GFRP bridge deck module. A 1.5 GHz ground-coupled GPR system and a radiometric infrared camera were used to scan the deck module for condition assessment. Test results showed that both GPR and IRT retained their respective effectiveness in detecting subsurface anomalies. GPR was found to be capable of detecting water-filled defects as small as 5×5?cm2 in plan size, and as thin as 0.15 cm. Furthermore, tests on additional specimens showed that the GPR system offers some promise in detecting bottom flange defects as far down as 10 cm deep. IRT, on the other hand, showed that it is capable of finding both water-filled and air-filled defects within the top layers of the deck with solar heating as main source of heat flux. While test results showed IRT is more sensitive to air-filled defects, water-filled defects can still be detected with a large enough heating mechanism. The experiments showed that a more detailed and accurate assessment can be achieved by combining both GPR and IRT.  相似文献   

6.
Many experimental studies have been performed to evaluate the behavior of noncorroding glass fiber reinforced polymer (GFRP) rebars in reinforced concrete (RC) flexural members. Relatively few studies have focused on the behavior of bridge deck overhangs in the event of a barrier wall impact, which subjects this region to a combination of flexure, shear, and axial tension. The objective of this investigation is to evaluate deck overhangs under these forces. Three bridge deck reinforcing schemes were considered in the study: all epoxy-coated steel (ECS), all GFRP, and hybrid made up of a top mat of GFRP rebars and a bottom mat of ECS rebars. Laboratory testing of nine RC specimens was performed. Results showed that all three reinforcing schemes meet the AASHTO requirements.  相似文献   

7.
This paper presents the experimental results from static and fatigue testing on a scale model of a hybrid fiber-reinforced polymer (FRP)–concrete bridge superstructure. The hybrid superstructure was designed as a simply-supported single span bridge with a span of 18.3 m. Three trapezoidal glass fiber-reinforced polymer (GFRP) box sections are bonded together to make up a one-lane superstructure, and a layer of concrete is placed in the compression side of those sections. This new design was proposed in order to reduce the initial costs and to increase the stiffness of GFRP composite structures. Static test results showed that the bridge model meets the stiffness requirement and has significant reserve strength. The bridge model was also subjected to two million load cycles to investigate its fatigue characteristics. The fatigue testing revealed that the structural system exhibits insignificant stiffness degradation.  相似文献   

8.
In addition to their high strength and light weight, fiber-reinforced polymer (FRP) composite reinforcing bars offer corrosion resistance, making them a promising alternative to traditional steel reinforcing bars in concrete bridge decks. FRP reinforcement has been used in several bridge decks recently constructed in North America. The Morristown Bridge, which is located in Vermont, United States, is a single span steel girder bridge with integral abutments spanning 43.90 m. The deck is a 230 mm thick concrete continuous slab over girders spaced at 2.36 m. The entire concrete deck slab was reinforced with glass FRP (GFRP) bars in two identical layers at the top and the bottom. The bridge is well instrumented at critical locations for internal temperature and strain data collection with fiber-optic sensors. The bridge was tested for service performance using standard truck loads. The construction procedure and field test results under actual service conditions revealed that GFRP rebar provides very good and promising performance.  相似文献   

9.
Glass fiber-reinforced polymer (GFRP) bridge deck systems offer an attractive alternative to concrete decks, particularly for bridge rehabilitation projects. Current design practice treats GFRP deck systems in a manner similar to concrete decks, but the results of this study indicate that this approach may lead to nonconservative bridge girder designs. Results from a number of in situ load tests of three steel girder bridges having the same GFRP deck system are used to determine the degree of composite action that may be developed and the transverse distribution of wheel loads that may be assumed for such structures. Results from this work indicate that appropriately conservative design values may be found by assuming no composite action between a GFRP deck and steel girder and using the lever rule to determine transverse load distribution. Additionally, when used to replace an existing concrete deck, the lighter GFRP deck will likely result in lower total stresses in the supporting girders, although, due to the decreased effective width and increased distribution factors, the live-load-induced stress range is likely to be increased. Thus, existing fatigue-prone details may become a concern and require additional attention in design.  相似文献   

10.
The design and construction of bridge systems with long-term durability and low maintenance requirements is a significant challenge for bridge engineers. One possible solution to this challenge could be through the use of new materials, e.g., fiber-reinforced polymer (FRP) composites, with traditional materials that are arranged as an innovative hybrid structural system where the FRP serves as a load-carrying constituent and a protective cover for the concrete. This paper presents the results of an experimental investigation designed to evaluate the performance of a 3/4 scale hybrid FRP-concrete (HFRPC) bridge deck and composite connection under sustained and repeated (fatigue) loading. In addition, following the sustained-load and fatigue portions of the experimental study, destructive testing was performed to determine the first strength-based limit state of the hybrid deck. Results from the sustained-load and fatigue testing suggest that the HFRPC deck system might be a viable alternative to traditional cast-in-place reinforced concrete decks showing no global creep behavior and no degradation in stiffness or composite action between the deck and steel girders after 2 million cycles of dynamic loading with a peak load of 1.26 times the scaled tandem load (TL). Furthermore, the ultimate strength test showed that the deck failed prior to the global superstructure at a load approximately six times the scaled TL.  相似文献   

11.
During freezing temperatures, ice accumulates on exposed concrete slabs such as bridge decks. Deicing salts such as calcium chloride are applied to control this ice formation. These salts migrate down to the reinforcing steel, and they can break down the passivation layer on steel, causing it to corrode. This paper is part of a broader research study to explore the possibility of opening the bridge decks earlier than the 10–12 days as practiced now, by decreasing the number of wet-mat curing days. Seven concrete mixtures typically used in Texas bridge decks were evaluated for chloride permeability using the ponding test (AASHTO T259). The primary experimental variables were the curing duration, type and percentage of supplemental cementitious materials, type of coarse aggregate, duration of ponding, and the surface preparation of ponded concrete specimens. Results of the investigation indicated that curing duration may be decreased for some concrete mixtures as no apparent improvement was shown after a specific curing duration, which ranged from 2 to 8 days depending on the mix.  相似文献   

12.
Glass fiber-reinforced polymer (GFRP) bridge decks suffering frequent cyclic loading of heavy wheels require relatively thick pultruded composites. To examine the behavior of 12 mm thick pultruded GFRP plates containing surface layers and to study the influence of surface damage, which may be present on such decks, static and fatigue tensile tests were carried out. Severe indentation yielded not only visible damage, but also an invisible damage in the unidirectional layer. Loss of cross section area due to both damages affected the static ultimate loads. Fatigue cracks were found around higher stress concentrations on the surface layer as early as approximately 10% of the total fatigue life. These initial cracks, however, barely affected the fatigue life because delamination of the surface layers prevented the cracks from propagating. The invisible shear crack due to indentation barely affected the fatigue life since earlier splitting between initially damaged and undamaged fibers mitigated the crack propagation.  相似文献   

13.
Glass fiber-reinforced polymer (GFRP) composite bridge decks behave differently than comparable reinforced concrete (RC) decks. GFRP decks exhibit reduced composite behavior (when designed to behave in a composite manner) and transverse distribution of forces. Both of these effects are shown to counteract the beneficial effects of a lighter deck structure and result in increased internal stresses in the supporting girders. The objective of this paper is to demonstrate through an illustrative example the implications of RC-to-GFRP deck replacement on superstructure stresses. It is also shown that, regardless of superstructure stresses, substructure forces will be uniformly reduced due to the lighter resulting superstructure.  相似文献   

14.
An experimental study of principal strains and deflections of glass fiber-reinforced polymer (GFRP) composite bridge deck systems is presented. The experimental results are shown to correlate well with those of an analytical model. While transverse strains and vertical deflections are observed to be consistent, repeatable, and predictable, longitudinal strains exhibit exceptional sensitivity to both strain sensor and applied load location. Large, reversing strain gradients are observed in the longitudinal direction of the bridge deck. GFRP deck system geometry, connectivity, material properties, and manufacturing imperfections coupled with the observed strains suggest that the performance of these structures should be assessed under fatigue loading conditions. Recommendations for accurately assessing longitudinal strain in GFRP bridge decks are made, and a review of existing data is suggested.  相似文献   

15.
The use of glass fiber-reinforced polymer (GFRP) bridge decks is appealing for applications where minimizing dead load is critical. This paper describes fatigue and strength testing of two types of GFRP decks being considered for use in the retrofit of an aging steel arch bridge in Snohomish County, Washington, where a roadway expansion is necessary and it is desirable to minimize the improvements to the arch superstructure. Each test used a setup designed to be as close as practicable to what will be the in situ conditions for the deck, which included a 2% cross slope for drainage. The fatigue testing consisted of a single 116 kN (26 kip) load applied for 2 million cycles, which corresponds to an AASHTO HS-25 truck with a 30% impact factor, and the strength testing consisted of multiple runs of a monotonically applied minimum load of 347 kN (78 kips). Results from the fatigue testing indicated a degradation of the stiffness of both deck types; however, the degradation was limited to less than 12% over the duration of loading. Further, the results showed both deck types accumulated permanent deck displacement during fatigue loading and one deck type used a detail with poor fatigue performance. That detail detrimentally impacted the overall deck performance and caused large permanent deck deformations. It was also found that degradation of composite behavior between the deck and girders occurs during fatigue loading and should be included in design.  相似文献   

16.
Over the past years, with increasing traffic volumes and higher wheel loads, fatigue damage in steel parts of typical orthotropic steel bridge decks has been experienced on heavily trafficked routes. A demand exists to find a durable system to increase the fatigue safety of orthotropic steel bridge decks. A solution might be to enhance the stiffness of the traditional orthotropic bridge deck by using a cement-based overlay. In this paper, an orthotropic steel bridge deck stiffened with a cement-based overlay is analyzed. The analysis is based on nonlinear fracture mechanics, and utilizes the finite-element method. The stiffness of the steel deck reinforced with an overlay depends highly on the composite action. The composite action is closely related to cracking of the overlay and interfacial cracking between the overlay and underlying steel plate (debonding). As an example, a real size structure, the Far? bridges located in Denmark, are analyzed. The steel box girders of the Far? bridges spans 80?m, and have a depth of 3.5?m, and a width of 19.5?m. The focus of the present study is the top part of the steel box girders, which is constructed as an orthotropic deck plate. Numerous factors can influence the cracking behavior of the cement-based overlay system. Both mechanical and environmental loading have to be considered, and effects such as shrinkage, temperature gradients, and traffic loading are taken into account. The performance of four overlay materials are investigated in terms of crack widths. Furthermore, the analysis shows that debonding is initiated for a certain crack width in the overlay. The load level where cracking and debonding is initiated depends on the stress-crack opening relationship of the material.  相似文献   

17.
In bridge engineering, the three-dimensional behavior of a bridge system is usually reduced to the analysis of a T-beam section, loaded by an equivalent fraction of the applied live load, which is called the live load distribution factor (LDF). The LDF is defined in the both the AASHTO Standard Specifications and the LRFD Specifications primarily for concrete slabs and has inherent applicable limitations. This paper provides explicit formulas using series solutions for LDF of orthotropic bridge decks, applicable to various materials but intended for fiber-reinforced polymer (FRP) decks. The present formulation considers important parameters that represent the response characteristics of the structure that are often omitted or limited in the AASHTO Specifications. A one-term series solution is proposed based on the macroflexibility approach, in which the bridge system is simplified into two major components, deck and stringers. The governing equations for the two components are obtained separately, and the deflections and interaction forces are solved by ensuring displacement compatibility at stringer lines. The LDF is calculated as the ratio of the single stringer interaction force to the summation of total stringer interaction forces. To verify this solution, a finite-element (FE) parametric study is conducted on 66 simply supported concrete slab-on-steel girder bridges. The results from the series solution correlates well with the FE results. It is also illustrated that the series solution can be applied to predict LDF for FRP deck-on-steel girder bridges, by favorable comparisons among the analytical, FE, and testing results for a one-third-scale bridge model. The scale test specimen consists of an FRP sandwich deck attached to steel stringers by a mechanical connector. The series solution is further used to obtain multiple regression functions for the LDF in terms of nondimensional variables, which can be used for simplified design purposes.  相似文献   

18.
Researchers at the University of Maine led an effort in the mid-1990s to develop and use glass-fiber-reinforced polymer (GFRP) tendons, instead of the commonly used steel-threaded bars, for stress-laminating timber bridge decks. The GFRP tendons are 12.7 mm (0.5 in.) in diameter and consist of seven-wire strands similar in construction to steel prestressing strands. Because the modulus of elasticity of the GFRP tendons is approximately 1/9 that of steel, they are not as susceptible to loss of prestress as steel bars and may not have to be restressed during the life of deck. In 1997, researchers obtained funding to design, construct, and monitor a stress-laminated timber bridge located in Milbridge, Maine, utilizing the new GFRP tendons. The bridge was constructed from preservative treated No. 2 and better eastern hemlock laminations and is 4.88 m (16 ft) long, 7.75 m (25 ft, 6 in.) wide, and 350 mm (14 in.) deep. Based on 4.25 years of field monitoring the tendon forces and moisture content, the GFRP tendons have maintained an adequate prestress level without having to be restressed.  相似文献   

19.
This paper reports on the monitoring and repair of a pilot field deployment of a glass fiber-reinforced polymer (GFRP) deck on a small steel girder bridge in the Washington State. Deck deflections were monitored periodically over a 10-month period and were found to increase significantly over that time. The GFRP deck is an adhesively bonded assembly of GFRP tubes and top and bottom plates. After 9 months of service, wearing surface cracking was observed, and upon closer inspection, the top GFRP plate was found to be delaminated from the tubes over a fairly large area. Deck deflections in the area of delamination were found to be considerably larger than those observed during previous monitoring in undamaged locations. A retrofit solution was employed where the top plate was reconnected to the tubes using screws coated with a two-part epoxy that mixed when they were driven. At the time of writing the retrofit was successful in reattaching the delaminated top plate.  相似文献   

20.
With the public’s demands for reduced construction time and traveling delays, full-depth precast bridge decks or decked bulb tees are being more widely used. When these systems are used, precast elements are brought to the construction site ready to be set in place and quickly joined together. Then, a concrete closure pour (CP) completes the connection. The selection of CP materials is critical. The procedure and methods for selecting durable CP materials are discussed in this paper. The accelerated construction is quantified as two categories: overnight cure of CP materials and 7-day cure of CP materials. For both categories, candidate materials are selected first based on literature review of published data as well as tests of compressive strength and flow and workability. Then, the performance criteria for selecting durable CP materials for both categories are developed based on durability tests of selected candidate materials. These durability tests include freezing-and-thawing durability, shrinkage, bond, and permeability tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号