首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A manually operated penetrometer (DMS) fitted with cylindrical (T-bar) and ball penetrometer tips was developed for measuring the profiles of undisturbed and remolded undrained shear strength within box-core samples. This paper summarizes the findings of a series of miniature penetrometer tests and vane shear tests that were carried out on reconstituted clay from a local site in Western Australia. The aim of the tests was to evaluate the potential of the DMS in characterizing the shear strength of seabed surficial sediments. It was found that the DMS gave essentially identical T-bar and ball penetration resistances but these were up to 17% lower than the net cone resistance. From the comparison between the T-bar and ball penetration resistance and the shear strengths measured from vane shear tests, average N factors of 11 and 14 were obtained for intact and fully remolded conditions, respectively. The test results suggest that the DMS is a reliable and efficient means of obtaining intact and remolded shear strength profiles.  相似文献   

2.
The undrained remolded shear strength of soft clays is of importance in geosystem design, particularly for offshore structures. Common methods to estimate remolded shear strength, such as correlations with cone penetration data, direct measurement with an in situ field vane shear device, and laboratory measurements, produce varied results and can be particularly costly and time consuming. Full-flow penetrometers (T-bar and Ball) provide an alternative rapid method to estimate remolded shear strength and soil sensitivity through remolding soil by repeated cycling of the penetrometer up and down over a given depth interval. The cyclic penetration resistance degradation curve inherently contains information regarding remolded strength and sensitivity. The objective of this paper is to assess the ability of full-flow penetrometers to predict remolded strength and soil sensitivity, and to develop a suite of predictive correlations in which these properties can be estimated in the absence of complementary laboratory or in situ test data. To accomplish this, full-flow penetration profiles and cyclic tests were performed at five well characterized soft clay sites, which together represent the broad range of soils in which the penetrometers will be often used. A previously developed model for the reduction in penetration resistance with cycling is modified to predict the entire degradation curve, including the remolded penetration resistance using only measurements obtained during initial penetrometer penetration and extraction. Using field vane shear strength as the reference measurement, correlations are developed to predict soil sensitivity and remolded shear strength based solely on full-flow penetrometer data, which is particularly useful in site investigation programs where site specific data are not yet available or are sparse. Finally, the usefulness of these relationships is demonstrated by implementing them for two additional soft clay sites.  相似文献   

3.
Full-flow penetrometers (the T-bar and ball) are increasingly used on sites with thick deposits of soft clays, particularly prevalent offshore. Full-flow penetration tests were performed at five international well-characterized soft clay test sites to assess the use of full-flow penetrometers to estimate undrained shear strength. Field vane shear data were used as the reference undrained strength. Statistical analyses of strength factors indicates that full-flow penetrometers provide an estimate of undrained shear strength at a similar level of reliability compared to the piezocone. Relationships for estimating the strength factor and soil sensitivity using only full-flow penetrometer data obtained during initial penetration and extraction are developed. A strong dependence of the strength factor on sensitivity was identified and can be used for the estimation of undrained strength. The effectiveness and use of the developed correlations are demonstrated through their application at an additional test site.  相似文献   

4.
Pipelines and risers form an essential part of the infrastructure associated with offshore oil and gas facilities. During installation and operation, these structures are subjected to repetitive motions which can cause the surrounding seabed soil to be remolded and soften. This disturbance leads to significant changes in the operative shear strength, which must be assessed in design. This paper presents an analytical framework that aims to quantify the degradation in undrained shear strength as a result of gross disturbance—in this case through repeated vertical movement of a cylindrical object embedded in undrained soil. The parameters of the framework were calibrated using data obtained in a geotechnical centrifuge test. In this test a T-bar penetrometer, which is a cylindrical tool used to characterize the strength of soft soil, was cycled vertically in soil with strength characteristics typical of a deep water seabed. Using simple assumptions regarding the spatial distribution of “damage” resulting from movement of the cylinder, and by linking this damage to the changing undrained shear strength via a simple degradation model, the framework is shown to simulate well the behavior observed in a cyclic T-bar test. This framework can potentially be extended to the similar near-surface behavior associated with seabed pipelines and risers.  相似文献   

5.
This paper describes the use of a soil minipenetrometer (SMP) to determine the strength and index properties of fine-grained soils. The SMP has been developed to allow both fall cone and quasi-static penetration tests to be performed. Displacement controlled quasi-static penetration tests can be used for the direct measurement of undrained shear strength, both for remolded and undisturbed samples. In addition the quasi-static penetration test can be used to define an additional lower plastic limit parameter, the PL100, which represents the moisture content of a fine-grained soil with an undrained strength 100 times that at the liquid limit. This approach offers the advantage that removal of the coarse fraction is not required to estimate the PL100.  相似文献   

6.
Effect of Penetration Rate on Penetrometer Resistance in Clay   总被引:1,自引:0,他引:1  
This paper discusses the effects of penetration rate on the penetration resistance in soft clay for various shaped penetrometers (cone, T-bar, ball, and plate) and for T-bars with different aspect ratios. Constant rate (“normal”) and variable rate (“twitch”) penetration tests, where the penetration rate was successively halved over eight steps with the penetrometer advanced by one or two diameters in each step, were undertaken in the beam centrifuge at the University of Western Australia. The tests were conducted on samples reconstituted from clay collected from the Burswood site in Western Australia. The twitch tests showed higher penetration resistance than the corresponding normal tests after the penetration rate had been reduced by a factor of 16 due to cumulative effects of partial consolidation. The penetration rate at which the resistance started to increase due to partial consolidation was used to estimate the consolidation coefficient, cv, of the reconstituted clay. The interpreted cv values were similar to values estimated from other consolidation data, both in the centrifuge and from laboratory Rowe cell and constant rate of strain consolidation tests. In addition, results from in situ twitch tests at the Burswood site were examined to evaluate viscous effects on the penetration resistance.  相似文献   

7.
Estimation of spudcan penetration resistance is an important design step to guarantee the stability and functionality of offshore mobile jack-up units. Dependence on in situ penetrometer test data to evaluate the stratigraphy and resulting spudcan capacity profile has been increased. However, this becomes difficult in intermediate soil types in which the degree of consolidation during penetration falls between the extremes of fully drained or fully undrained. In this study, a penetrometer-based methodology utilizing results from cone and T-bar penetration tests is developed. Three main steps are involved, comprising estimation of the relative penetration resistance of spudcan and cone or T-bar penetrometer under fully drained and fully undrained conditions, and then quantifying the effect of the different normalized penetration rates for spudcan and penetrometer. Values of the various correlation parameters for the proposed model are evaluated. The validity and accuracy of the proposed methodology are evaluated through case studies from centrifuge tests in clay and a field example of spudcan installation in interbedded carbonate silts and sands. The comparisons confirm the potential of the proposed methodology for interpretation of penetrometer tests and application to the prediction of foundation performance.  相似文献   

8.
Evaluation of a Dike Damaged by Pile Driving in Soft Clay   总被引:1,自引:0,他引:1  
This paper presents a case study detailing a riverbank dike damaged by pile driving in very soft clay in Shanghai, P.?R. China. Driven piles were designed to support the existing dike to be raised to a higher elevation. The subsoil mainly consisted of very soft clay with its natural moisture content greater than its liquid limit. This paper describes the phenomena of dike movement and crack development during pile driving based on field observations and instrumentation data. Cone penetration tests and vane shear tests were conducted after pile driving to investigate the slip surfaces. Degradation of soil strength was identified as the main cause for the failure of this dike. Slope stability analysis was conducted to back-calculate the degraded undrained shear strength of the clay. The results indicate that the soil strength in the disturbed area due to pile driving approached the level of its remolded strength.  相似文献   

9.
Triaxial consolidation undrained shear tests are performed on both undisturbed and remolded Ariake clays to investigate the undrained shear strength behavior. When the applied confining stress is larger than the triaxial consolidation yield stress, the strength envelopes expressed in the plot of undrained shear strength versus confining stress of both the undisturbed and the remolded Ariake clays are straight lines through the origin. The strength envelope of the remolded Ariake clays lies above that of the undisturbed Ariake clays when the applied confining stress is larger than the consolidation yield stress. This difference is caused by the difference in water content between undisturbed and remolded states. When the data obtained from triaxial consolidation undrained shear tests of both the undisturbed and the remolded Ariake clays are plotted in the plot of undrained shear strength versus water content, it is found that the undrained shear strength decreases uniquely with the increase in water content.  相似文献   

10.
A series of centrifuge model tests of the lateral response of a fixed-head single pile in soft clay is reported. Both monotonic and cyclic episodes of loading are described, with varying amplitude and with intervening periods of reconsolidation. The soil conditions are characterized by cyclic T-bar penetrometer tests. The ultimate capacity under monotonic load for virgin and for postcyclic conditions was found to be comparable with calculations based on existing design methods, including theoretical plasticity solutions and empirical methods. The lateral stiffness was observed to degrade with cycles, with the rate of degradation being greater for larger cycles. The degradation pattern has been tentatively linked to the cyclic T-bar response, by considering the ‘damage’ associated with the cumulative displacement and remolding, in each case. This approach provides a consistent interpretation of the tests. Although episodes of pile movement and soil remolding led to a reduction in lateral resistance, intervening periods of reconsolidation led to a similar magnitude of recovery and a reduction in the level of softening in subsequent cyclic episodes. During an initial episode of cyclic lateral movement, the stiffness degraded by a factor of 2.3, which is comparable with the strength sensitivity derived from a cyclic T-bar test. In contrast, after five episodes of reconsolidation, the stiffness had recovered back to within 25% of the stiffness observed in the first cycle of the first episode, and it showed negligible degradation during subsequent cycling. This observation implies that, over a long period of cyclic loading, the lateral stiffness of a pile may tend towards a value that is independent of cycle number, and that represents a balance between the damaging effects of remolding and pore pressure generation and the healing effects of time and reconsolidation.  相似文献   

11.
The existence of large magnitude stresses at the tip of a bearing pile is a well known phenomenon leading to crushing of soil grains and thus affecting pile behavior. Classical foundation design calculations which assume that the soil fails in shear and neglect volume change can be safely used where stress levels or particle strengths prevent crushing, however in the case of weak grains or high foundation stresses consideration should be given to the effects of grain crushing and the resulting volumetric compression. Model pile tests have been carried out in two skeletal carbonate sands and a standard silica sand with the aim of examining the variation of skin friction and end bearing capacities with degree of penetration. The mobilization of the strength of crushable soils requires a much higher strain level while at the same time the end bearing pressure on the model piles exceeded 10?MPa inducing considerable particle breakage. The peak skin friction for all sands occurred at a settlement normalized by pile diameter, S/D, of less than 0.1. At this point the carbonate sands generally had lower skin friction values than the silica sand. Further displacement caused a rapid decrease in skin friction for all three materials. At higher lateral stresses the less crushable Toyoura silica sand generated higher skin frictions. Samples of Chiibishi sand were sectioned and photographed. It was observed that a spherical plastic zone was formed at the base of the pile which expanded with increasing S/D and a degraded layer of broken particles developed around the pile as S/D increased. Large values of the Marsal particle breakage factor were restricted to a zone extending outwards to one pile radius. An end bearing capacity modification factor has been proposed to adapt the conventional bearing capacity equation for soil crushability. This modification factor is a function of soil compressibility and degree of penetration. The factor was shown to decrease with increasing soil compressibility and increase with normalized penetration S/D.  相似文献   

12.
In this paper, the effects of penetration rate on cone resistance in saturated clayey soils are investigated. Shear strength rate effects in clayey soils are related to two physical processes: the increase of shear strength with increasing rate of loading and the increase of shear strength as the process transitions from undrained to drained. Special focus is placed on this second effect. Cone penetration tests were performed at various penetration rates both in the field and in a calibration chamber, and the resulting data were analyzed. The field cone penetration tests were performed at two test sites with fairly homogeneous clayey silt and silty clay layers located below the groundwater table. Additionally, tests with both cone and flat-tip penetrometers in sand-clay mixtures were performed in a calibration chamber to investigate the change in drainage conditions from undrained to partially drained and from partially drained to fully drained. A series of flexible-wall permeameter tests were conducted in the laboratory for various clayey sand mixtures prepared at various mixing ratios in order to obtain values of the coefficient of consolidation, which is required to estimate the penetration rates below which penetration is drained and above which penetration is undrained. A correlation between cone resistance and drainage conditions was established based on the results of the calibration chamber and field penetration tests.  相似文献   

13.
Although the cylindrical cavity expansion theory should provide a sound basis for obtaining the undrained shear strength of clays from pressuremeter tests, the interpreted strengths are often inconsistent with data measured in high-quality laboratory tests. This paper investigates how the pressuremeter results are affected by disturbances that inevitably occur during device installation. The installation of self-boring and displacement-type pressuremeters is simulated using strain path analyses, with realistic effective stress-strain-strength properties described by the MIT-E3 model. Derived strengths obtained from the simulated expansion of displacement-type pressuremeters tend to underestimate the in situ∕cavity expansion strength by amounts that depend on the relative volume of soil displaced, the time delay prior to testing, and the initial overconsolidation ratio of the clay. Interpretation procedures using the simulated contraction curves give much more reliable estimates of the true undrained shear strength. The simulated disturbance effects of self boring lead to derived peak shear stresses that are significantly higher than the reference undrained shear strengths. This overestimate depends on the volume of soil removed during installation and is enhanced when the finite membrane length is included in the analyses. Self-boring pressuremeter data from a well-documented test site in Boston confirm the general character of the predicted pressuremeter stress-strain behavior. The theoretical analyses underestimate the peak strengths derived from self-boring pressuremeter (SBPM) expansion tests, but match closely the measured postpeak resistance in the strain range of 3–6% (saddle point condition). Saddle point strengths are similar in magnitude to the shear strengths measured in laboratory undrained triaxial compression tests at this site. The current predictions are not able to explain the very high shear strengths derived from the SBPM contraction curves.  相似文献   

14.
A solution is developed for the buildup, steady, and postarrest dissipative pore fluid pressure fields that develop around a conical penetrometer that self-embeds from free-fall into the seabed. Arrest from free-fall considers deceleration under undrained conditions in a purely cohesive soil, with constant shear strength with depth. The resulting decelerating velocity field is controlled by soil strength, bearing capacity factors, and inertial components. At low impact velocities the embedment process is controlled by soil strength, and at high velocities by inertia. With the deceleration defined, the solution for a point normal dislocation migrating in a poroelastic medium is extended to incorporate the influence of a tapered tip. Dynamic steady pressures, PD, develop relative to the penetrating tip geometry with their distribution conditioned by the nondimensional penetration rate, UD, incorporating impacting penetration rate, consolidation coefficient, and penetrometer radius, and the nondimensional strength, ND, additionally incorporating undrained shear strength of the sediment. Pore pressures may develop to a steady peak magnitude at the penetrometer tip, and drop as PD = 1/xD with distance xD behind the tip and along the shaft. Induced pore pressures are singular in the zone of tip taper for the assumed zero radius of the penetrometer, negating the direct evaluation of permeability magnitudes from pressures recorded on the cone face. However, peak induced pressure magnitudes may be correlated with sediment permeabilities, postarrest dissipation rates may be correlated with consolidation coefficients, and depths of penetration may be correlated with shear strengths. The magnitudes of fluid pressures evaluated on the shaft may be correlated with sharp penetrometer data (reported by Urgeles et al. in 2000) to independently evaluate magnitudes of strength and transport parameters.  相似文献   

15.
Grout piles are often used to reinforce the base soil against base heave when carrying out deep excavations in soft clay. However, there is still a lack of an adequate criterion to describe the shear strength of clay reinforced with grout piles. In general, the anisotropic strength characteristic of clay reinforced with grout piles is more significant than that of clay. The objective of this work is to develop an anisotropic strength criterion for the reinforced soil mass. Only four parameters are needed in this anisotropic strength criterion: two are the strength properties of the in situ clay, namely, the axial compressive and axial extensive undrained shear strengths; another is the undrained shear strength of treated soil; and the final is the improvement ratio which is related to the spacing and layout pattern of the grout piles. To be used in two-dimensional undrained stability analysis, the suitability of this anisotropic strength criterion under plane strain conditions is verified by comparing the results with true triaxial test. The maximum difference between the calculated and laboratory measured shear strengths is less than 8%. The results of this study indicate that the anisotropic undrained shear strength of clay reinforced with grout piles under plane strain condition decreases with an increase in the angle between the vertical direction and the major principal stress and decreases with a decrease in the strength anisotropy ratio of clay reinforced with grout piles. However, there will be a greater improvement in the effect if the grout piles are installed in the active zone rather than in the passive zone. This is because the shear strength of a grout pile mobilized in the active zone is close to its maximum level.  相似文献   

16.
Modified Direct Shear Test for Anisotropic Strength of Sand   总被引:1,自引:0,他引:1  
This paper presents a simple method to estimate the directional dependency of granular soil strength using a modified shear box and a special specimen preparation procedure. This method is used to investigate the strength anisotropy of granular materials with particle shapes varying from spherical to angular. The experimental results show that the friction angle of granular materials varies with the orientation of shear plane relative to the bedding plane, and the degree of anisotropy is affected by particle shape. Comparison of the data from direct shear tests in this study with those of plane strain and torsional simple shear tests in the literature shows that direct shear using the modified direct shear box can reasonably capture the directional dependency of the friction angle for cohesionless materials.  相似文献   

17.
Flow liquefaction is a major design issue for large soil structures such as mine tailings impoundments and earth dams. If a soil is strain softening in undrained shear and, hence, susceptible to flow liquefaction, an estimate of the resulting liquefied shear strength is required for stability analyses. Many procedures have been published for estimating the residual or liquefied shear strength of cohesionless soils. This paper presents cone penetration test-based relationships to evaluate the susceptibility to strength loss and liquefied shear strength for a wide range of soils. Case-history analyses by a number of investigators are reviewed and used with some additional case histories. Extrapolations beyond the case-history data are guided by laboratory studies and theory.  相似文献   

18.
Since different undrained shear strengths may be obtained from different laboratory or field tests, different cone factors are needed to calculate the undrained shear strengths from the results of a piezocone test in clay. Based on the anisotropic undrained shear strength criterion, a set of cone factors for calculating undrained shear strength is proposed in this paper. These cone factors are interrelated with each other in terms of the strength anisotropy ratio of the clay. The suitability of the proposed cone factors has been verified using the test results generated from different tests and from clays with different origins. By comparing with the cone factor for isotropic clay, it was found that the effect of strength anisotropy on the cone factor is not always significant. In fact, the effect of strength anisotropy becomes significant only in lightly overconsolidated to normally consolidated clay with moderate to high strength anisotropy. Furthermore, the maximum difference in cone factor is not expected to exceed 20% with or without taking into account the strength anisotropy of clay.  相似文献   

19.
A new upper bound failure mechanism for the problem of rigid cylinder motion is presented. The velocity field associated with the mechanism is derived from a known elastic solution by similitude of the deformation field. The obtained upper bound value is 21% higher than the exact solution. However, the failure mechanism is continuous, involving no discontinuity, not even on the cylinder perimeter. The solution has a certain advantage if one, for example, wishes to combine its mechanism with a strain path approach to investigate the T-bar penetration problem. The absence of discontinuities in the mechanism also allows evolution of deformation under serviceability conditions, by associating a mobilized strength as a function of an average strain. Based on this approach, a load transfer function for lateral loading of piles in an undrained clay is suggested. This load transfer function involves nonlinear scaling of a stress-strain curve obtained from a triaxial compression test. An analytical, closed form, solution is given for the case of a hyperbolic stress-strain curve.  相似文献   

20.
Aging effects in sand, such as increases in cone penetration resistance with time after deposition and/or densification, are known to occur in the field, but the causes of these effects are not fully understood. A laboratory testing program was designed to study mechanisms responsible for aging effects under controlled conditions. The testing program included measurements of the small strain shear modulus, electrical conductivity, pore fluid chemistry, and minicone penetration resistance after different periods of aging. Two different sands were tested, and aging effects were evaluated for different combinations of relative density, temperature, and pore fluid composition. Increases in the small strain shear modulus were observed throughout most of the tests, and chemical analyses suggest that precipitation of carbonate and silica occurred in two tests. Despite these changes, there was no corresponding increase in the minicone penetration resistance with time in any of the tests. It is unlikely that precipitation of carbonate or silica is responsible for aging effects in sands; other possible mechanisms include arching due to dissipation of blast gases and redistribution of stresses through the soil skeleton. An additional possibility is that the boundary conditions imposed by the laboratory tests obscure changes in penetration resistance that would be measured had the volume of sand tested been much larger. The implications of these findings in terms of other published field and laboratory studies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号