首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Prp20/Srm1, a homolog of the mammalian protein RCC1 in Saccharomyces cerevisiae, binds to double-stranded DNA (dsDNA) through a multicomponent complex in vitro. This dsDNA-binding capability of the Prp20 complex has been shown to be cell-cycle dependent; affinity for dsDNA is lost during DNA replication. By analyzing a number of temperature sensitive (ts) prp20 alleles produced in vivo and in vitro, as well as site-directed mutations in highly conserved positions in the imperfect repeats that make up the protein, we have determined a relationship between the residues at these positions, cell viability, and the dsDNA-binding abilities of the Prp20 complex. These data reveal that the essential residues for Prp20 function are located mainly in the second and the third repeats at the amino-terminus and the last two repeats, the seventh and eighth, at the carboxyl-terminus of Prp20. Carboxyl-terminal mutations in Prp20 differ from amino-terminal mutations in showing loss of dsDNA binding: their conditional lethal phenotype and the loss of dsDNA binding affinity are both suppressible by overproduction of Gsp1, a GTP-binding constituent of the Prp20 complex, homologous to the mammalian protein TC4/Ran. Although wild-type Prp20 does not bind to dsDNA on its own, two mutations in conserved residues were found that caused the isolated protein to bind dsDNA. These data imply that, in situ, the other components of the Prp20 complex regulate the conformation of Prp20 and thus its affinity for dsDNA. Gsp1 not only influences the dsDNA-binding ability of Prp20 but it also regulates other essential function(s) of the Prp20 complex. Overproduction of Gsp1 also suppresses the lethality of two conditional mutations in the penultimate carboxyl-terminal repeat of Prp20, even though these mutations do not eliminate the dsDNA binding activity of the Prp20 complex. Other site-directed mutants reveal that internal and carboxyl-terminal regions of Prp20 that lack homology to RCC1 are dispensable for dsDNA binding and growth.  相似文献   

5.
6.
7.
The amino- and carboxy-terminal nucleotide-binding domains (NBD1 and NBD2) of P-glycoprotein (P-gp) share over 80% sequence identity. Almost all of NBD1 can be exchanged by corresponding NBD2 segments with no significant loss of function, except for a small segment around the Walker B motif. Within this segment, we identified two sets of residues [ERGA --> DKGT (522-525) and T578C] that, when replaced by their NBD2 counterparts, cause dramatic alterations of the substrate specificity of the protein [Beaudet, L., and Gros, P. (1995) J. Biol. Chem. 270, 17159-17170]. We wished to gain insight into the molecular basis of this defect. For this, we overexpressed the wild-type mouse Mdr3 and variants bearing single or double mutations at these positions in the yeast Pichia pastoris. P-gp-specific ATPase activity was measured in yeast plasma membrane preparations after detergent solubilization and reconstitution in Escherichia coli proteoliposomes. P-gp proteoliposomes from P. pastoris showed a strong verapamil- and valinomycin-stimulated ATPase activity, with characteristics (KM, Vmax) similar to those measured in mammalian cells. Mutations did not appear to affect the KM for Mg2+ATP ( approximately 0.4 mM), but maximum velocity (Vmax) of the drug-stimulated ATPase activity was severely affected in a substrate/modulator-specific fashion. Indeed, all mutants showed complete loss of verapamil-induced ATPase, while all retained at least some degree of valinomycin-induced ATPase activity. Photolabeling studies with [125I]iodoarylazidoprazosin, including competition with MDR drugs and modulators, suggested that drug binding was not affected in the mutants. The altered drug resistance profiles of the ERGA --> DKGT(522-525) and T578C mutants in vivo, together with the observed alterations in substrate-induced ATPase activity of these proteins, suggest that the residues involved may form part of a signal pathway between the membrane regions (substrate binding) and the ATP binding sites.  相似文献   

8.
9.
DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, interacts with acidic phospholipids, such as cardiolipin, and its activity seems to be regulated by membrane binding in cells. In this study we introduced site-directed mutations at the positions of hydrophobic or basic amino acids which are conserved among various bacteria species and which are located in the putative membrane-binding region of DnaA protein (from Asp357 to Val374). All mutant DnaA proteins showed much the same ATP and ADP binding activity as that of the wild-type protein. The release of ATP bound to the mutant DnaA protein, in which three hydrophobic amino acids were mutated to hydrophilic ones, was stimulated by cardiolipin, as in the case of the wild-type protein. On the other hand, the release of ATP bound to another mutant DnaA protein, in which three basic amino acids were mutated to acidic ones, was not stimulated by cardiolipin. These results suggest not only that the region is a membrane-binding domain of DnaA protein but also that these basic amino acids are important for the binding and the ionic interaction between the basic amino acids and acidic residues of cardiolipin and is involved in the interaction between DnaA protein and cardiolipin.  相似文献   

10.
The binding site for tat protein on TAR RNA has been defined in quantitative terms using an extensive series of mutations. The relative dissociation constants for the mutant TAR RNAs were measured using a dual-label competition filter binding assay in which 35S-labelled wild-type TAR RNA (K1) was competed against 3H-labelled mutant TAR RNA (K2). The error in the self-competition experiment was usually less than 10% (e.g. K2/K1 = 1.07 +/- 0.05, n = 19) and the experimental data accurately matched theoretical curves calculated with fitted dissociation constants. Mutations in U23, a critical residue in the U-rich "bulge" sequence, or in either of the two base-pairs immediately above the "bulge", G26.C39 and A27.U38 reduced that affinity by 8- to 20-fold. Significant contributions to tat binding affinity were also made by the base-pairs located immediately below the bulge. For example, mutation of A22.U40 to U.A reduced tat affinity 5-fold, and mutation of G21.C41 to C.G reduced tat affinity 4-fold. The binding of a series of peptides spanning the basic "arginine-rich" sequence of tat was examined using both filter-binding and gel mobility shift assays. Each of the peptides showed significantly reduced affinities for wild-type TAR RNA compared to the tat protein. The ADP-2 (residues 43 to 72), ADP-3 (residues 48 to 72) and ADP-5 (residues 49 to 86) peptides were unable to discriminate between wild-type TAR RNA and TAR RNA mutants with the same fidelity as the tat protein. For example, these peptides showed no more than 3-fold reductions in affinity relative to wild-type TAR RNA for the U23-->C mutation in the bulge, or G26.G39-->C.G mutation in the stem of TAR RNA. By contrast, the ADP-I (residues 37 to 72), ADP-4 (residues 32 to 62) and ADP-6 (residues 32 to 72) peptides, which each carry amino acid residues from the "core" region of the tat protein have binding specificities that more closely resemble the protein. The ADP-4 and ADP-6 peptides showed between 4- and 7-fold reductions in affinity for the U23-->C or G26.C39-->C.G mutations. The ADP-1 peptide most closely resembles the protein in its binding specificity and showed 9-fold and 14-fold reductions in affinity for the two mutants, respectively. Chemical-modification interference assays using diethylpyrocarbonate (DEPC) and ethylnitrosourea (ENU) were also used to compare the binding properties of the tat protein and the tat-derived peptides.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The plum pox potyvirus (PPV) protein CI is an RNA helicase whose function in the viral life cycle is still unknown. The CI protein contains seven conserved sequence motifs typical of RNA helicases of the superfamily SF2. We have introduced several individual point mutations into the region coding for motif V of the PPV CI protein and expressed these proteins in Escherichia coli as maltose binding protein fusions. Mutations that abolished RNA helicase activity also disturbed NTP hydrolysis. No mutations affected the RNA binding capacity of the CI protein. These mutations were also introduced in the PPV genome making use of a full-length cDNA clone. Mutant viruses carrying CI proteins with reduced RNA helicase activity replicated very poorly in protoplasts and were unable to infect whole plants without rapid pseudoreversion to wild-type. These results indicate that motif V is involved in the NTP hydrolysis step required for potyvirus RNA helicase activity, and that this activity plays an essential role in virus RNA replication inside the infected cell.  相似文献   

12.
13.
Involvement of the pleckstrin homology (PH) domain in the insulin-stimulated activation of protein kinase B (PKB) was investigated in human embryonic kidney 293 cells. Different PKB constructs that contain mutations or deletions in the PH domain were transfected into cells, and the results on the basal and insulin-induced kinase activities were analyzed. Deletion of the entire PH domain (DeltaPH-PKB) did not impair the kinase activity; in contrast, the basal activity was elevated with respect to wild-type PKB. In addition, DeltaPH-PKB was responsive to insulin, and as for wild-type PKB, this was dependent on phosphoinositide 3-kinase. By contrast, a point mutation within the PH domain that impairs phospholipid binding (R25C) resulted in a construct that was not responsive to insulin. However, this defect was overcome by mutations that mimic the phosphorylation state of the active kinase. The increase in the basal activity of DeltaPH-PKB was shown to be due to an elevation in the level of phosphorylation of this construct. In addition, the subcellular localization of DeltaPH-PKB, as determined by both immunofluorescence and fractionation, was predominately cytosolic, and DeltaPH-PKB was present in the plasma membrane at much lower levels compared with wild-type PKB. These data show that phosphorylation is the major factor regulating the activity of PKB and that either removal of the PH domain or binding of phospholipids is required to permit this phosphorylation. In addition, membrane localization does not appear to be required for the activation process, but instead, binding of PKB to membrane phospholipids permits a conformational change in the molecule that allows for phosphorylation.  相似文献   

14.
The tumor suppresser protein p53 has been called the "guardian of the genome." DNA damage induces p53 to either halt the cell cycle, allowing for repair, or initiate apoptosis. P53 is mutated in over 50% of human tumors and it has been proposed that many tumorigenic mutations are deleterious to p53 because they induce local unfolding. To explore this hypothesis, peptide models have been developed to study tumorigenic mutations in the H2 helix of the p53 core domain. This helix is rich with charged residues and is a key component of the DNA binding region. A 16-residue peptide corresponding to the H2 wild-type sequence extended with an Ala-rich C-terminus was synthesized and studied by 1H-nmr (500 MHz) and CD. The nmr studies demonstrate that this peptide adopts helical structure in solution. Six additional peptides corresponding to subtle tumorigenic mutations were synthesized and CD was used to assess the relative stability of these "mutant analogues." All six mutations studied are destabilizing relative to the wild type, with delta delta G values in the range of 0.26 to 1.35 kcal mol-1. Surprisingly, substitution of Asp 281 with Ala resulted in a peptide with the greatest destabilization even though Ala possesses the largest helix propensity of the common 20 amino acids. Because this helix appears to be stabilized mainly by local electrostatics, we conclude that its structure is susceptible to even the most conservative mutations. These results provide support for the hypothesis that tumorigenic mutations induce local unfolding of p53.  相似文献   

15.
In the Saccharomyces cerevisiae Msh2p-Msh6p complex, mutations that were predicted to disrupt ATP binding, ATP hydrolysis, or both activities in each subunit were created. Mutations in either subunit resulted in a mismatch repair defect, and overexpression of either mutant subunit in a wild-type strain resulted in a dominant negative phenotype. Msh2p-Msh6p complexes bearing one or both mutant subunits were analyzed for binding to DNA containing base pair mismatches. None of the mutant complexes displayed a significant defect in mismatch binding; however, unlike wild-type protein, all mutant combinations continued to display mismatch binding specificity in the presence of ATP and did not display ATP-dependent conformational changes as measured by limited trypsin protease digestion. Both wild-type complex and complexes defective in the Msh2p ATPase displayed ATPase activities that were modulated by mismatch and homoduplex DNA substrates. Complexes defective in the Msh6p ATPase, however, displayed weak ATPase activities that were unaffected by the presence of DNA substrate. The results from these studies suggest that the Msh2p and Msh6p subunits of the Msh2p-Msh6p complex play important and coordinated roles in postmismatch recognition steps that involve ATP hydrolysis. Furthermore, our data support a model whereby Msh6p uses its ATP binding or hydrolysis activity to coordinate mismatch binding with additional mismatch repair components.  相似文献   

16.
17.
18.
19.
20.
Recently a number of mutations have been found in vitro which maintain alpha 1-adrenergic receptors (ARs) in a partially activated form. We have previously identified two amino acid residue positions in the alpha 1b-adrenergic receptor (AR), Cys128 and Ala204, one in each of the third and fifth transmembrane segments, that constitutively activate the receptor when substituted for a phenylalanine or valine, respectively [Perez et al. (1996) Mol. Pharmacol. 49, 112-122; Hwa et al. (1996) J. Biol. Chem. 271, 7956-7964]. Another mutation analyzed previously, Ala293Glu, located in the third intracellular loop, also constitutively activates the receptor [Kjelsborg et al. (1992) J. Biol. Chem. 267, 1430-1433]. All three mutations displayed similar manifestations of constitutive activity such as higher binding affinity and potency for agonists as well as higher basal signal transduction as predicted by the revised ternary complex model of receptor activation. We hypothesized that the individual mutations because of their critical location alter the conformation of the transmembrane helices such that mimicry occur that partially conforms to the activated state, R*. To explore whether these potential conformations are independent, we combined these three mutations in all possible permutations. The combined triple mutation displays 700-fold higher binding affinity for (-)-epinephrine and 20-fold higher basal IP3 release than the wild-type receptor. We also observed that each mutation contributed independently and synergistically to both receptor agonist binding and activation with the combined mutations basal activity exceeding that of the fully-stimulated wild-type receptor. There was also a direct correlation between epinephrine's binding affinity and the degree of constitutive activity. Because the mutations affect different transmembrane domains, these results are consistent with a mechanism that helical movement acts in a concerted fashion in agonist-induced activation, a synergism predicted if multiple helix movement is involved in receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号