首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ni/ZrO2 was used as raw materials to fabricate the surface infiltrated composite layer with 1-4 mm thickness on cast steel substrate through vacuum infiltrated casting technology. The microstructure indicated that the infiltrated composite layer included surface composite layer and transition layer. Wear property was investigated under room temperature and 450 ℃. The results indicated that the abrasion volume of substrate was 8 times that of the infiltrated composite layer at room temperature. The friction coefficient of infiltrated composite layer decreased with the increasing load. The wear resistance of infiltrated composite layer with different ZrO2 contents had been improved obviously under high temperature. The friction coefficient of infiltrated composite layer was decreased comparing with that at room temperature. The oxidation, abrasive and fatigue abrasion was the main wear mechanism at room temperature. Oxidation abrasion, fatigue wear and adhesive wear dominated the wearing process under elevated temperature.  相似文献   

2.
ZrO2/Ni nanocomposite was produced via pulse electrodeposition using a nickel sulfmate bath. The effects of main factors including pH value, temperature T, current density Dk and ZrO2 content p on the electrodeposit were dealt with by the Taguchi method. Experimental results show that the current density and ZrO2 content affect the electrodepositing process significantly. Nanocomposite with an average grain size of about 50 nm and ZrO2 content of up to 0.4 wt% was produced under the optimal condition. The Young's modulus of the achieved composite is similar to that of polycrystalline Ni. The microhardness is much higher than that of common pure Ni, primarily due to the ultrafine grains of Ni matrix by the Hall-Petch mechanism. The homogeneous dispersion of stiff ZrO2 particles in the Ni matrix acting as dislocation pinning and microcrack pinning also results in the strengthening effect.  相似文献   

3.
The ZrO2/TiO2 pillared laponite (Ti-Zr-lap) photocatalysts were prepared with intercalation reaction by supercritical fluid drying (SCFD),and characterized by XRD,TEM,SEM and BET surface area analysis,and the photocatalytic properties of Ti-Zr-lap were investigated by degradation of azo dye acid red B (ARB).The results showed that the ZrO2/TiO2 pillared structures in laponite could be formed,with the mass fraction of (Zr4++Ti4+)/laponite (Xm) increasing,the basal spacing and the BET surface area of Ti-Zr-lap significantly increased.The Ti-Zr-lap used as photocatalyst had the advantages of stable and porous layered structure,large surface area with the anatase type TiO2.Compared with the Ti-Zr-lap dried by air drying,the Ti-Zr-lap dried by SCFD showed better photocatalytic property which was very close to that of P25 TiO2.Using the Ti-Zr-lap as photocatalyst with the optimum Xm of 0.16 and the calcination temperature of 500 ℃,under the conditions of the initial concentration of ARB 20 mg/L,photocatalyst concentration of 1.5 g/L and irradiation time 60 min,the decoloring rate of ARB could achieve 98.3%,indicating that the Ti-Zr-lap had excellent photocatalytic property.  相似文献   

4.
Liquid ball-milling dispersant method was used to prepare the ZrO2-doped carbon laminations from mesocarbon microbeads(MCMBs). After sintering at 1 300 ℃ in nitrogen atmosphere, the effect of ZrO2 concentration on sintering behavior, electric conductivity as well as bending strength of the carbon laminations was investigated in detail. The results showed that the volumetric shrinkage rate of the carbon laminations decreased from 38.2% to 30.9% when the ZrO2 concentration in raw materials varied from 0 to 16...  相似文献   

5.
Ammoniwn metatungstate and cobalt nitrate were mixed at the molecular level in distilled water and then spruy-decomposed to CoWO4/WO3 nanoconposite powder. The particle morphology, crystalline size,forming course, chemical composition ant phase structure of the powder were studied by SEM , TEM , DTA- TG , IR and XRD , respectively. Reshlts show that the powder is homogeneous, spherical and nano-aggregated.  相似文献   

6.
Nanocomposites MgFe2O4/SiO2 were successfully synthesized by the sol-gel method in the presence of N, N-dimethylformamide (DMF). The formation of pure MgFe2O4 was confirmed by powder X-ray diffraction (XRD) and electron diffraction. The structural evolution of MgFe2O4 nanocrystals was followed by powder X-ray diffraction and IR absorption spectroscopy. The formation of spinel structure of MgFe2O4 started at 800 °C, and completed at 900 °C. The transmission electron microscopy (TEM) measurements suggest that the particle sizes increase with the increasing annealing temperature, and the mean particle sizes of the spherical samples annealed at 800 °C, 900 °C and 1 050 °C are ca. 3 nm, 8 nm and 11 nm, respectively. Magnetization measurements at room temperature and 78 K indicate superparamagnetic nature of these MgFe2O4 nanocrystals. Funded by the National Natural Science Foundation of China(No. 30771676), the Natural Science Foundation of Jiangsu Province (No. BK20081842), and the Foundation of Nanjing Bureau of Personal for the Returned Overseas Chinese Excellent Scholars  相似文献   

7.
Monodisperse ZrO2 nanoparticles capped by trioctylphosphine oxide (TOPO) were prepared in non-aqueous solvent using in-situ synthesis method. Transmission electron microscopy(TEM), X-ray diffraction(XRD), X-ray photoelectron spectrometer(XPS), Fourier transformation infrared spectroscopy (FTIR), and thermogravimetric analysis(TGA) were adopted to characterize and investigate the size, structure, composition, and the binding manners between organic capping agent TOPO and inorganic ZrO2 nanocores of the as-pr...  相似文献   

8.
Effects of Al2O3 and Ni as the additives on the sinterability, microstructure and mechanical properties were systematic studied. The experimental results show that only a relative density about 96.2% of hot-pressing TiB2-30%Al2O3 can be attained due to the plate-like TiB2 particle and its random orientation and excessive Al2O3 grain growth. When sintering temperature is higher than 1 700 ℃, TiB2 grain growth can be found, which obvious improves flexural strength of TiB2 matrix but decreases toughness. It seems that mechanical properties of TiB2-Al2O3 composites are mainly depended on relative density besides grain growth. otherwise, they will be determined by relative density and TiB2 matrix strength together. Anyway, Al2O3 addition can weaken the grain boundary and thus improve the toughness of the materials. A flexural strength of 529 MPa, Vickers hardness of 24.8 GPa and indentation toughness of 4.56 MPa·m1/2 can be achieved inTiB2-30vol% Al2O3.  相似文献   

9.
High-yielding low-cost vanadium oxide nanotubes were prepared by hydrothennal self-assembling process from vanadium pentoxide and organic molecules as structure-directing templates..Moreowr, a new method was discovered to determine the content of V (IV) in vanadium oxide nanotubes by thermograrimetric analysis ( TGA ). This method can be extended to determine the content of low oxidation state in other transition metal oxide nanomaterials.  相似文献   

10.
In order to in situ measure chemical parameters of deep-sea water and hydrothermal fluids at midocean ridge(MOR), it is necessary to use high temperature and high pressure chemical sensors.Developing new sensors is essential to measure in-situ pH and other chemical parameters(dissolved H2, dissolved H2S) of deep-sea water and hydrothermal fluids in a wide temperature range(2℃―400℃) at MOR vents.The YSZ(Yttria Stabilized Zirconia, 9%Y2O3) ceramic-based(HgO/Hg) chemical sensors possess excellent electrochemic...  相似文献   

11.
The manufacture process of 8 mol% Y2O3 stabilized ZrO2 ( YSZ ) from nano powders, including the forming and sintering stages, was studied. During the forming process of YSZ powders, the relative density of YSZ increases lineally with the forming press, and the sintering linear shrinkage of YSZ to the forming press compiles to the parabola trend. When the forming press exceeding 500MPa, the samples with lower shrinkage and high density were obtained. The sintering temperature of YSZ decreases greatly because of the small size and high active surface of YSZ powders. As a result, the beginning sintering temperature of YSZ made in the experiment is as low as 825℃, and the end sintering temperature is 1300-1350℃ . The relative density of YSZ ceramic by solid sintering at 1300-1350℃ is more than 97% , with little and small pores in the uniform microstructure.  相似文献   

12.
In order to get a homogenous mixture and compact of TiB2-Al2O3, hybridization as a surface modification method was used to prepare nano-scale Al2O3 coated TiB2 particles. PE-wax particles were first coated onto TiB2 particles by hybridization, and then the nano-scale Al2O3 particles were coated onto the surface of TiB2 coated by PE-wax particles again. SEM, TEM and EDS were used to characterize the microstructure of as-received core/shell particles and its compacts. The experimental results show that a particle-scale homogenous dispersion of TiB2 and Al2O3 can be formed not only in mixed powder but also in dewaxed compacts. The compacts then were sintered by gas-pressing sintering (GPS). Finial products show improved mechanic properties comparing with reference samples fabricated by normal ways.  相似文献   

13.
A novel and facile synthesis route for the manufacture of transparent and uniform self-assembled nanocrystalline Cr2O3 (nc-Cr2O3) thin films with different morphology was reported, utilizing chromium nitrate as the inorganic source and triblock copolymer F127 as the morphology-directing agent by the evaporation-induced assembly (EIA) method. X-ray powder diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), N2-sorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the as-prepared nc-Cr2O3 thin films. The Cr2O3 thin film with different morphology was obtained by changing the relative humidity. The possible formation mechanism of the nc-Cr2O3 thin films with different morphologies was discussed.  相似文献   

14.
To reveal the properties of ZrO2 at the atom and electron levels, the valence electron structures of three ZrO2 phases were analyzed on the basis of the empirical electron theory of solids and molecules. The results showed that the hybridization levels of Zr and O atoms in the m-ZrO2 were the same as those in the t-ZrO2, while those in the c-ZrO2 rose markedly. The electron numbers and bond energies on the strongest covalent bonds in the m-ZrO2 phase were the greatest, the values were 0.901106 and 157.5933 kJ/mol, respectively. Those in the t-ZrO2 phase took second place, which were 0.722182 and 123.9304 kJ/mol, and those in the c-ZrO2 phase were the smallest, which were 0.469323 and 79.0289 kJ/mol. According to the product of the bond energy on the strongest covalent bond and equivalent bond number (this value reflected the crystal cohesive energy), the order from the greatness to smallness was the c-ZrO2> t-ZrO2 > m-ZrO2. This showed that the m-phase bonds were the tightest, their energy was the smallest, the crystal cohesive energy of the m-phase was the largest, and the m-phase existed most stably at room temperature. So it must need energy or higher temperature to take apart the stronger covalent bonds to form a new phase. Supported by the Major Project of the National Natural Science Foundation of China (Grant No. 90505015)  相似文献   

15.
(PEO) x −(V0.85Mo0.15)2O5(x=0,0.5,1.0) nanocomposite films were prepared by a modified sol-gel method. The structure of the films was analyzed by XRD, and the DC electrical conductivity. Cyclic voltammogram and optical spectral transmittance were investigated. The results show that the (V0.85Mo0.15)2O5 xerogel has a layered structure and its interlayer space increased from 1.3181 nm at x=0 to 1.7897 nm at x=1.0. The introduction of MoO3 improved the DC electrical conductivities of the films due to the generation of V4+ to maintain the electrical neutrality of the oxides. PEO intercalated in the interlayer of (V0.85Mo0.15)2O5 oxides has interaction with the oxides, enhancing the amount of Li+ ions inserted into the interlayer of the oxides. Moreover, the intercalation of PEO into the interlayer of (V0.85Mo0.15)2O5 oxides improved the cathodic electrochromic property in near ultraviolet region and anodic electrochromic property in visible range. JIANG Cong-sheng: Born in 1963 Supported by the Science Foundation of Hubei Province (Grant No. 2001ABB083)  相似文献   

16.
The effect of annealing on microstructure, adhesive and frictional properties of GeSb2Te4 films were experimentally studied. The GeSb2Te4 films were prepared by radio frequency (RF) magnetron sputtering, and annealed at 200℃ and 340℃ under vacuum circumstance, respectively. The adhesion and friction experiments were mainly conducted with a lateral force microscope (LFM) for the GeSb2Te4 thin films before and after annealing. Their morphology and phase structure were analyzed by using atomic force microscopy (AFM) and X-ray Diffraction (XRD) techniques, and the nanoindention was employed to evaluate their hardness values. Moreover, an electric force microscope (EFM) was used to measure the surface potential. It is found that the deposited GeSb2Te4 thin film undergoes an amorphous-to-fcc and fcc-to-hex structure transition; the adhesion has a weaker dependence on the surface roughness, but a certain correlation with the surface potential of GeSb2Te4 thin films. And the friction behavior of GeSb2Te4 thin films follows their adhesion behavior under a lower applied load. However, such a relation is replaced by the mechanical behavior when the load is relatively higher. Moreover, the GeSb2Te4 thin film annealed at 340℃ presents a lubricative property.  相似文献   

17.
The precursor with TiC0.7N0.3@WO3-MO3 microspheres were prepared by a novel method from the WO3-MoO3 sol dipping. Subsequently, TiC0.7N0.3@WC-MoC2 core-shell structural microspheres were successfully obtained by carburizing the precursor at 900 °C in a flowing mixture of CH4 (20 ml·min-1) and H2 (200 ml·min-1) for 2 h. Then TiC0.7N0.3@WC-MoC2-15Co cermets were prepared utilizing the core-shell powders by spark plasma sintering (SPS). Powders of the precursors with TiC0.7N0.3@WO3-MO3 microspheres, TiC0.7N0.3@WC-MoC2 microspheres and TiC0.7N0.3@WC-MoC2-15Co cermets were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The obtained TiC0.7N0.3@WC-MoC2 microspheres have a dense WC-MoC2 coatings shell. The thickness of the shell could be easily controlled by adjusting the number of sol dipping cycles. It was found that the TiC0.7N0.3@WC-MoC2 microspheres were more beneficial to fabricate the "core-rim" structures by SPS.  相似文献   

18.
The structure characteristics of hydrated calcium silicate synthesized by solution reaction method with the existing of water soluble polymer polyvinyl alcohol(PVA)are investigated.Using Na 2 SO 3 and Ca(NO 3 ) 2 as the main raw materials,in the condition of 2%(in weight)addition of PVA and the water to solid ratio of 20,hydrated calcium silicate samples(Ca/Si=1.0 and 1.5)were prepared with 60℃water bath.IR,BET,XRD and SEM methods were used to study the microstructure of the hydration products.The results s...  相似文献   

19.
Al2 O3/Al composite was fabricated by the reaction between SiO2 and molten aluminum. The microstructures of the composite obtained under different reaction conditions were analyzed. The formation mechanism of the composite microstructure was discussed. Results show that the reaction kinetics is influenced remarkably by the reaction temperature, reaction time and the quantity of SiO2. The morphologies of Al2O3 have different features, depending on the reaction temperature. The composite has equaxed Al2O3 grains when materials reacted below 1200°C, and the composite is composed of a large number of fine Al2O3 grains and aluninum. The composite has a frame-shaped Al2O3 microstructure at the reaction temperature of above 1250°C. CHENG Xiao-min: Born in 1964 Funded by the National Natural Science Foundation of China (No. 91522)  相似文献   

20.
Sm3(Fe,Ti)29Nx/α-Fe dual-phase nanometer magnetic material was fabricated through rapid solidification, crystallization and nitridation of Sm-Fe (Ti) alloy. The effect of combination of rapid solidification and Ti alloy addition on the phase formation and microstructure of the Sm-Fe alloy is investigated in this paper. The microstructure of amorphous phase and dual-phase nano-grain crystals before and after crystallization annealing were observed using a high-resolution transmission electron microscope (HREM). The dual-phase nano-grains after annealing were compacted together with a clear interface with the direct exchange-coupling mechanism. Different annealing processes were used to examine the melt-spun alloy. Comparison of the images of SEM showed that annealing at 750℃ for 10 min was most suitable to get homogeneous and nano-grains. No obvious kink was detected in the second quadrant of the hysteresis loop like a single hard magnet, and strong exchange coupling was found between hard magnets and soft magnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号