首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of edible coatings and mild heat shocks is proposed as postharvest treatments to prevent microbial deterioration of refrigerated broccoli. Minimally processed broccoli was coated with either chitosan or carboxymethyl-cellulose (CMC) combined or not with a previous application of a mild heat shock. The evolution of microbial populations (mesophilic, psycrotrophic, Enterobacteriaceae, molds and yeast, and lactic acid bacteria) was studied during 20 d of storage and fitted to Gompertz and logistic models. Results revealed that, at the end of the storage, chitosan coating significantly reduced all microbiological population counts, except lactic acid bacteria; while higher reduction was observed with chitosan coating combined with a heat shock treatment. A significant delay at the beginning of the exponential phase was observed for all the bacterial populations analyzed. On the other hand, CMC coating, with and without a previous thermal treatment, did not exert any antibacterial effect. Excellent agreement was found between experimental microbial counts and predicted values obtained from Gompertz and logistic models. Kinetic modeling was found to be valuable for prediction of microbiological shelf life of broccoli during storage. Results showed that the application of chitosan coating effectively maintained microbiological quality and extended shelf life of minimally processed broccoli. According to these results, the use of the edible chitosan coating alone or in combination with a heat mild shock appear to be a viable alternative for controlling microbiological growth and sensory attributes in minimally processed broccoli. PRACTICAL APPLICATION: The continuous consumer interest in high quality and food safety, combined with environmental concern has induced to the development and study of edible coatings that avoid the use of synthetic materials. The edible coatings, formed from generally recognized as safe materials, have the potential to reduce weight loss, respiration rate, and improve food appearance and integrity. It is one of the most effective methods to maintain food quality. On the other hand, heat treatments have been demonstrated to be effective as a nonchemical means of improving postharvest quality for a variety of horticultural products. The applications of mild heat shocks combined with edible coatings constitute an alternative for the natural preservation of crops for which the use of synthetic chemicals is objectionable.  相似文献   

2.
Chitosan is considered as a functional packaging component for maintaining the quality and increasing the shelf life of perishable foods include meat, poultry, fish, dairy products, and all cooked leftovers. The present study was conducted to evaluate edible coating of chitosan (2%) containing ethanolic extract of propolis (1% and 2%) on microbiological (mesophilic aerobic, psychrotrophic, lactic acid bacteria, coliforms, and Staphylococcus aureus counts), chemical (TBARS, TVN and Peroxide values) and sensory (odor, color, texture, taste, and overall acceptance) properties of chicken fillet. Microbial analysis showed that coating had a significant reducing effect on growth of bacteria during 12 days at 4 °C. Besides, the increase of TBARS, Total volatile nitrogen, and peroxide value of samples coated by chitosan and ethanolic extract of propolis was less than control group. According to our results, chitosan and propolis can be used to enhance the shelf life of fillet and maintain its quality.

Practical applications

Propolis is used for infections caused by bacteria, viruses, fungus, and by single‐celled organisms called protozoans. Propolis is also used as an antioxidant and anti‐inflammatory agent. Ethanol extract of propolis improve the properties of chitosan edible coating in chicken fillet preservation. The chitosan coating incorporated with ethanolic extract of propolis can improve the microbial, chemical, and sensory quality of food and enhance the shelf life of them by synergistic effects.  相似文献   

3.
The effect of chitosan (0.5%)/Jicama starch (0%–4%)‐based edible coating on the quality of Nile tilapia (Oreochromis niloticus) fillets was evaluated over ice storage time. All samples were periodically analysed for pH value, thiobarbituric acid (TBA), total volatile basic nitrogen (TVB‐N), electrical conductivity (EC), total viable counts (TVC), total psychrotrophic counts (TPC), drip loss, colour, hardness and sensory characteristics. Results demonstrated that the quality of Nile tilapia fillets was preserved by the film containing chitosan and/or Jicama starch. Compared with chitosan coating alone (0.5% chitosan/0.25% glycerol) (< 0.05), T3 (0.5% chitosan/1% Jicama starch/0.25% glycerol) had a better effect on the drip loss, TBA, TVC, TPC, hardness and sensory characteristics of the samples, thus indicating that low Jicama starch concentration (1%) enriched the coating ability of chitosan in extending the shelf life of Nile tilapia fillets.  相似文献   

4.
The activity of some natural compounds for extending the storage life of fresh‐cut fruits was examined. In particular, the effect of chitosan, honey and pineapple juice used as filling solution on the growth of mesophilic bacteria, psychrotrophic bacteria, lactic acid bacteria and yeasts, in fruit‐based salads stored at 4 °C, 8 °C and 12 °C was investigated. Honey showed the greatest antibacterial effect on mesophilic and psychrotrophic bacteria, with non significant effects on lactic acid bacteria and yeasts. The antimicrobial activity of chitosan affected the growth of all microbial groups considered (mesophilic and psychrotrophic bacteria, lactic acid bacteria and yeast), particularly, in conditions of refrigerated storage. In contrast, no difference in the growth of monitored microorganisms between samples containing pineapple juice and control was detected.  相似文献   

5.
This study was designed to analyze the effects of the storage and preservation conditions on counts of mesophilic, thermoduric, psychotrophic, coliform, Escherichia coli, Streptococcus agalactiae, and Staphylococcus aureus organisms in silo ovine milk. A total of 910 analytical determinations were conducted from aliquots of 10 silo ovine milks. The conditions tested were unpreserved and azidiol-preserved milk stored at 4°C, and unpreserved milk stored at −20°C. Milk aged 2, 24, 48, 72, and 96 h post-collection for refrigerated aliquots, and 7, 15, and 30 d post-collection for frozen aliquots. The factors silo and storage conditions significantly contributed to variation of all microbiological variables, although milk age effect within storage was only significant for mesophilic, psychrotrophic, and coliform bacteria counts. In refrigerated raw milk, mesophile, psychrotroph, and coliform counts significantly increased over 96 h post-collection, whereas the other groups and bacteria species tested maintained their initial concentration. In all cases, azidiol preservation maintained the initial bacterial concentration in raw sheep milk under refrigeration throughout 96 h. Thus, azidiol was a suitable preservative for microbiological studies in sheep milk. Smallest counts were registered for frozen samples, particularly for coliforms, E. coli, Strep. agalactiae and Staph. aureus. Estimates of mesophilic, thermoduric and psychrotrophic organisms showed similar values on both azidiol-preserved and frozen milk samples. Coliforms and E. coli counts significantly decrease over time after freezing. Consequently, freezing at −20°C could also be appropriate for analysis of mesophilic, thermoduric, and psychrotrophic bacterial groups, but not for coliforms or mammary pathogens.  相似文献   

6.
A survey of fresh and minimally-processed fruit and vegetables, and sprouts was conducted in several retail establishments in the Lleida area (Catalonia, Spain) during 2005-2006 to determine whether microbial contamination, and in particular potentially pathogenic bacteria, was present under these commodities. A total of 300 samples--including 21 ready-to-eat fruits, 28 whole fresh vegetables, 15 sprout samples and 237 ready-to-eat salads containing from one to six vegetables--were purchased from 4 supermarkets. They were tested for mesophilic and psychrotrophic aerobic counts, yeasts and moulds, lactic acid bacteria, Enterobacteriaceae, presumptive E. coli and Listeria monocytogenes counts as well as for the presence of Salmonella, E. coli O157:H7, Yersinia enterocolitica and thermotolerant Campylobacter. Results for the fresh-cut vegetables that we analyzed showed that, in general, the highest microorganism counts were associated with grated carrot, arugula and spinach (7.8, 7.5 and 7.4 log cfu g(-1) of aerobic mesophilic microorganisms; 6.1, 5.8 and 5.2 log cfu g(-1) of yeast and moulds; 5.9, 4.0 and 5.1 log cfu g(-1) lactic acid bacteria and 6.2, 5.3 and 6.0 log cfu g(-1) of Enterobacteriaceae). The lowest counts were generally associated with fresh-cut endive and lettuce (6.2 and 6.3 log cfu g(-1) of aerobic mesophilic microorganisms; 4.4 and 4.6 log cfu g(-1) of yeast and moulds; 2.7 and 3.8 log cfu g(-1) lactic acid bacteria and 4.8 and 4.4 log cfu g(-1) of Enterobacteriaceae). Counts of psychrotrophic microorganisms were as high as those of mesophilic microorganisms. Microbiological counts for fresh-cut fruit were very low. Sprouts were highly contaminated with mesophilic (7.9 log cfu g(-1)), psychrotrophic microorganisms (7.3 log cfu g(-1)) and Enterobacteriaceae (7.2 log cfu g(-1)) and showed a high incidence of E. coli (40% of samples). Of the samples analyzed, four (1.3%) were Salmonella positive and two (0.7%) harboured L. monocytogenes. None of the samples was positive for E. coli O157:H7, pathogenic Y. enterocolitica or thermotolerant Campylobacter.  相似文献   

7.
Ready-to-eat (RTE) cured vacuum-packed turkey breast was pasteurized (80°C, 5.5 min) and stored at 8°C (like supermarkets refrigerator temperature). After 42 days (current shelf life of this product), in control group (RTE cured vacuum-packed turkey breast), the number of mesophilic, anaerobic, lactic acid bacteria, mold and yeast, coliform, and psychrotrophic increased 5.82, 6.85, 5.85, 4.75, 1.49, and 5.57 log CFU/g, respectively. However, in the pasteurized samples, the number of mesophilic, anaerobic, and lactic acid bacteria increased 1.86, 2.12, and 2.28 log CFU/g, respectively, and mold and yeast, coliform, and psychrotrophic bacteria were under the detection limit. The effects of post-packaging pasteurization on the reduction of total mesophilic, anaerobic and lactic acid bacteria counts on Day 42 of storage was 7.04 ± 0.33, 4.73 ± 0.11, and 5.58 ± 0.11 log CFU/g, respectively. Sensory quality of treated samples was significantly better than the control's (p < .05). Post-packaging pasteurization (PPP) significantly inhibited the reduction in the pH and the increase in TVB-N, TBARS, titratable acidity, and drip loss (p < .05). This study shows the effectiveness of PPP on microbial, chemical, and sensory quality of cured vacuum-packed turkey breast during cold storage.  相似文献   

8.
The aim of this study was to evaluate the microbial quality of some minimally processed vegetables. A total of 345 samples of minimally processed vegetables were acquired at a department store, a local supermarket, and a restaurant in Seoul, Korea. Samples were tested for microorganism distributions and for the presence of pathogenic bacteria. The aerobic mesophilic counts ranged between 2.0 and 9.7 log CFU/g, with the highest count recorded from the sprouts. Counts of psychrotrophic microorganisms were as high as those of the mesophilic microorganisms. Total coliform populations between 1.0 and 8.8 log CFU/g were found in 98.3% of the samples. Microbiological counts for fresh-cut fruits were very low. Sprouts were highly contaminated with microorganisms and showed a high incidence of Escherichia coli and Clostridium perfringence. Salmonella species and Listeria monocytogenes were detected in 1.5 and 0.3% of samples, respectively. E. Coli O157:H7 and Yersinia enterocolitica were not detected in any of the samples.  相似文献   

9.
This study was conducted to determine the initial and spoilage microbiota of Pacific white shrimp during ambient and cold storage using next‐generation sequencing (NGS) and a culture‐dependent method. The quality changes were also evaluated by sensory analysis and total volatile basic nitrogen (TVB‐N) values. After 1 d of storage, the psychrotrophic bacteria were only 5.97 log CFU/g, accounting for 1.1% of the mesophilic bacteria counts (7.94 log CFU/g). The psychrotrophic bacteria counts exceeded the counts of mesophilic bacteria for shrimp stored at 4 °C after 6 d of storage, indicating that psychrotrophic bacteria became predominant. The NGS was used to identify the bacterial species in samples stored at 25 and 4 °C. The results showed that the dominant microorganisms were Vibrio at 25 °C, and Acinetobacter, Psychrobacter, and Shewanella at 4 °C. By the culture‐dependent method based on 16S rRNA gene and VITEK®2 CompactA system, it showed that the dominant microorganisms were Proteus spp. at 25 °C, and Shewanella putrefaciens, Acinetobacter johnsonii, and Aeromonas sobria at 4 °C. In conclusion, differences in results of microbiota analyzed by culture dependent and independent approaches were observed. The combination of both methodologies may provide more comprehensive information about the dominant spoilage microbiota in Pacific white shrimp during ambient and cold storage.  相似文献   

10.
A study on the use of natural antimicrobial compounds to improve the microbiological stability of refrigerated amaranth-based homemade fresh pasta is presented in this work. In particular, the antimicrobial activity of thymol, lemon extract, chitosan and grapefruit seed extract (GFSE) has been tested against mesophilic and psychrotrophic bacteria, total coliforms, Staphylococcus spp., yeasts and moulds. A sensory analysis on both fresh and cooked pasta was also run. Results suggest that chitosan and GFSE strongly increase the microbial acceptability limit of the investigated spoilage microorganisms, being the former the most effective. Thymol efficiently reduces the growth of mesophilic bacteria, psychrotrophic bacteria and Staphylococcus spp., whereas it does not affect, substantially, the growth cycle of total coliforms. Lemon extract is the less effective in preventing microbial growth. In fact, it is able to delay only total mesophilic and psychrotrophic bacterial evolution. From a sensorial point of view no significant differences were recorded between the control samples and all the types of loaded amaranth-based pasta.  相似文献   

11.
Several recent foodborne disease outbreaks associated with leafy green vegetables, including spinach, have been reported. X-ray is a non-thermal technology that has shown promise for reducing pathogenic and spoilage bacteria on spinach leaves. Inactivation of inoculated Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on spinach leaves using X-ray at different doses (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5 and 2.0 kGy) was studied. The effect of X-ray on color quality and microflora counts (mesophilic counts, psychrotrophic counts and yeast and mold counts) of untreated and treated spinach was also determined. A mixture of three strains of each tested organism was spot inoculated (100 μl) onto the surface of spinach leaves (approximately 8–9 log ml−1), separately, and air-dried, followed by treatment with X-ray at 22 °C and 55–60% relative humidity. Surviving bacterial populations on spinach leaves were evaluated using a nonselective medium (tryptic soy agar) with a selective medium overlay for each bacteria; E. coli O157:H7 (CT-SMAC agar), L. monocytogenes (MOA), and S. enterica and S. flexneri (XLD). More than a 5 log CFU reduction/leaf was achieved with 2.0 kGy X-ray for all tested pathogens. Furthermore, treatment with X-ray significantly reduced the initial inherent microflora on spinach leaves and inherent levels were significantly (p < 0.05) lower than the control sample throughout refrigerated storage for 30 days. Treatment with X-ray did not significantly affect the color of spinach leaves, even when the maximum dose (2.0 kGy) was used.  相似文献   

12.
Chitosan has recently gained more interest due to its applications in food and pharmaceutics. Among others, the antimicrobial activity of chitosan has been pointed out as one of its most interesting properties of chitosan.The aim of this study was threefold: (1) the quantification of the antimicrobial effect of chitosan with a deacetylation degree of 94% and a molecular weight of 43 kDa on different psychrotrophic spoilage organisms and food pathogens. (2) The determination of the influence of different food components (starch, whey protein, NaCl and oil) on the antimicrobial effect of chitosan and (3) the investigation of the effects of chitosan coatings on controlling decay of minimally processed fruits and vegetables (strawberry and lettuce). For the first aim several bacteria and yeast were exposed to chitosan concentrations varying from 40 to 750 mg/l. Generally, Gram-negative bacteria seemed to be very sensitive for the applied chitosan (MIC0.006% (w/v)) while the sensitivity of Gram-positive bacteria was highly variable and that of yeast was intermediary (0.01% (w/v)). To achieve the second aim, the media, with one of these components added, were inoculated with Candida lambica (±2 log cfu/ml) and were incubated at 7°C until the yeast reached the stationary phase. Starch, whey proteins and NaCl had a negative effect on the antimicrobial activity. Oil conversely had no influence. For the third aim, the chitosan coating was formed by dipping the products in a chitosan–lactic acid/Na-lactate solution from which the pH was adjusted to the pH of the products. These products were equilibrium modified atmosphere (EMA)-packaged, stored at 7°C and during storage sensorially and microbiologically evaluated. A chitosan coating on strawberries was applicable while on mixed lettuce the chitosan coating was not applicable due to the development of a bitter taste. The microbiological load on the chitosan-dipped samples was lower for both products. The antimicrobial effect of chitosan on lettuce disappeared after 4 days of storage, while it maintained on the strawberries during 12 days.  相似文献   

13.
In the present study, we assessed the possibility of improving the shelf life of fresh sea bass (Dicentrarchus labrax) fillets by using vacuum packaging and wrapping with chitosan-based edible films during cold storage at 4 °C. Sea bass fillet samples were periodically evaluated to assess chemical (pH, trimethylamine and total volatile basic nitrogen) and microbiological (presence of mesophilic aerobic bacteria and psychrotrophic bacteria) quality. Chemical spoilage (trimethylamine and total volatile basic nitrogen) and growth of microorganisms (total mesophilic and total psychrophilic aerobic bacterial counts) were significantly reduced (P?≤?0.05) in vacuum-packaged chitosan film wrapping during cold storage at 4 °C. The results showed that the shelf life of the control and vacuum-packaged groups ended within 5 days, whereas that of vacuum-packaged chitosan film-wrapped samples ended at 25 to 30 days. Therefore, the shelf life of sea bass fillets wrapped in chitosan was prolonged by about 20 days.  相似文献   

14.
《Food microbiology》2005,22(2-3):227-231
White croaker (Micropogonias furnieri) were submitted to a direct electric current post-mortem and stored refrigerated at 4°C for 16 days. Flesh and surface of electrically treated fish exhibited higher mesophilic bacteria counts than controls on the 3rd and on the 6th day of storage, respectively. Conversely, electrical treatment reduced flesh and surface psychrotrophic bacteria counts on the 12th and on the 16th day of storage, respectively. These changes had no influence on fish shelf life since they occurred when microbial counts were higher than the recommended limit for human consumption. Electrical treatment significantly reduced total count of mesophilic but did not affect psychrotrophic bacteria in the water used in fish treatment. These results suggest that although post-mortem application of electric current does not increase fish shelf life, it may reduce microbial counts in the water used in fish processing.  相似文献   

15.
The effect of gaseous ozone and hot water, alone or in combination, on the sensory and microbial quality of cantaloupe melon was investigated. Escherichia coli O157:H7 transmission from the rind to edible melon flesh during cutting practices was also investigated. Four different treatments consisting of hot water (75 degrees C, 1min), gaseous ozone (10,000ppm, 30min), gaseous ozone supplied by carbon monoxide gas and the combination of hot water and gaseous ozone were evaluated. Sensory quality and growth evolution of aerobic mesophilic and psychrotrophic bacteria, coliforms and molds were studied. In general, hot water, gaseous ozone, and the combination of hot water and gaseous ozone were effective in reducing total microbial population. The combination of hot water and gaseous ozone was the most effective treatment to control microbial growth achieving 3.8, 5.1, 2.2 and 2.3log reductions for mesophilic and psychrotrophic bacteria, molds and coliforms, respectively. However no significant differences were observed between gaseous ozone and gaseous ozone supplied by with carbon monoxide gas. There was no evidence of damage in melons treated with hot water, ozone or their combination and they maintained initial texture and aroma. Therefore, the combination of hot water and gaseous ozone may be an efficient and promising treatment for controlling microbial growth and maintaining sensory quality of melons.  相似文献   

16.
This study investigated the effect of chitosan coating (1 and 2%) on the quality of grass carp fillets stored at 4°C for 20 days. During storage, the physicochemical properties (pH, thiobarbituric acid value, total volatile basic nitrogen value, trimethylamine nitrogen value, K-value, water loss, and instrumental texture), microbiology (total viable count and psychrotrophic count), and sensory properties were evaluated. The results showed that chitosan coating could effectively inhibit bacterial growth, improve physicochemical and sensory qualities, and it reduced the deterioration of the quality of grass carp fillets. Compared with fillets without chitosan coating, the shelf life of fillets with 1 and 2% chitosan coating was extended by ~3 and 6–7 days, respectively.  相似文献   

17.
Salmonella spp. and Escherichia coli are well tolerant of freezing. This study was to investigate survival of the foodborne pathogens during storage at −18 ± 2°C for 12 weeks on blueberries after washing with: 500 ppm acetic acid plus 5,000 ppm sodium dodecyl sulfate (SDS) (AA/SDS), 20 ppm peroxyacetic acid plus 5,000 ppm SDS (PPA/SDS), or 200 ppm hydrogen peroxide plus 5,000 ppm SDS (H2O2/SDS), when compared with findings from no wash, or wash with water, 80 ppm PPA or 200 ppm chlorinated water. Following a 60 s contact with one of the three new solutions, the treatments showed 3.3–3.9 log10 CFU/g reductions in Salmonella Typhimurium and E. coli O157:H7 counts. After 2 weeks of frozen storage, 3.9–4.2 log10 CFU/g reductions of Salmonella and E. coli were observed. After 12 weeks of frozen storage, Salmonella and E. coli survivors were below detection limits (0.39 log10 CFU/g) in berries washed with new solutions. The frozen storage had a significant impact (p < .05) on microbial counts of both treated and nontreated blueberries. Although none of these washings decreased the total phenolic and anthocyanins contents and apparent quality at time 0, frozen storage caused significant damage on the texture of both treated and nontreated blueberries. Interestingly, no significant decrease in the total phenolic, anthocyanins content, and apparent quality was observed during the 12-week frozen storage. The counts of total bacteria, yeasts, and molds decreased throughout storage for treated and untreated berries. This demonstrates that the three wash solutions enhance the safety of frozen berries.  相似文献   

18.
This study investigated the effects of packaging and storage temperature on the spinach phylloepiphytic bacterial community and fate of Escherichia coli O157:H7. Freshly harvested spinach was rinsed and/or disinfected, packaged and stored under typical retail conditions (4 °C) or under temperature abuse conditions (10 °C) for a period of 15 days. The final population size of culturable epiphytic bacteria after 15 days of storage was not affected by the temperature of storage or the presence of E. coli O157:H7. However, analysis of the bacterial community using denaturing gradient gel electrophoresis of 16s rDNA revealed changes with time of storage and the presence of E. coli O157:H7. Excision and sequencing of prominent DGGE bands identified that the majority of sequences belonged to the phyla Actinobacteria, Bacteroidetes, Firmicutes and Alphaprotebacteria. After 10 days of storage at 4 °C or 10 °C the population became more dominated by psychrotrophic bacteria. Removal of the epiphytic bacteria resulted in significant increases in numbers of E coli O157:H7 at 10 °C and was associated with decreased expression of E. coli O157:H7 virulence (stxA, curli, eaeA) and stress response (rpoS, sodB) genes. In conclusion, storage temperature and time of storage of packaged spinach affected the diversity of the epiphytic spinach microbiota which influenced the growth, establishment, physiology and potentially virulence of E. coli O157:H7.  相似文献   

19.
Fresh produce can be a vehicle for the transmission of pathogens capable of causing human illnesses and some of them can grow on fresh-cut vegetables. The survival and growth of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes inoculated onto shredded lettuce was determined under modified atmosphere packaging conditions, at various storage temperatures. We also monitored changes in pH and gas atmospheres within the packages and the growth of psychrotrophic and mesophilic microorganisms. After pathogen inoculation, shredded lettuce was packaged in films of different permeability and stored at 5 and 25 °C. After 10 days at 5 °C populations of E. coli O157:H7 and Salmonella decreased approximately 1.00 log unit while L. monocytogenes increased about 1.00 log unit, in all package films. Moreover, the pathogens level increased between 2.44 and 4.19 log units after 3 days at 25 °C. Psychrotrophic and mesophilic bacteria had similar growth at both temperatures with higher populations in air than in the other atmospheres. The composition of the storage atmosphere within the packaging of lettuce had no significant effect on the survival and growth of the pathogens used in this study at refrigeration temperatures. The results obtained can be considered as a warning indicator, which reinforces the necessity for corrective measures to avoid contamination of vegetables.  相似文献   

20.
An antimicrobial capsule releasing thyme oil was developed using modified halloysite nanotubes (HNTs). In order to increase the pore volume, HNTs were treated with 5.0 mol/L NaOH solution, which resulted in the encapsulation of more thyme oil molecules inside the HNTs. The morphology of the raw HNTs and NaOH‐treated HNTs (N‐HNTs) was characterized using transmission electron microscopy and nitrogen adsorption‐desorption analysis. The loading capacity increased from 180.7 ± 12.7 to 256.4 ± 16.7 mg thyme oil/g HNT after the NaOH treatment. The aerial release characteristics of thyme oil from both the HNT capsules were investigated in a closed‐package atmosphere system at 4, 25, and 40 °C. The antimicrobial activity of the capsule against Escherichia coli O157:H7 was determined using the vapor phase assay. Moreover, the antimicrobial effects of the capsule against E. coli O157:H7, total mesophilic aerobic bacteria (MAB), and molds and yeasts (MY) on the surfaces of cherry tomatoes were investigated at 4 and 25 °C for 5 d. When the cherry tomatoes were exposed to the thyme oil‐loaded N‐HNT capsule, the number of E. coli O157:H7, MAB, and MY significantly reduced during storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号