首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effect of additives on glass transition behavior in melt processed blends of polystyrene (PS) and polypropylene (PP) was studied. Blends of additive‐free polystyrene and additive‐free polypropylene revealed the known effect of the PS Tg increase in blend compositions where PP surrounds PS. Glass transition behavior in these blends was compared to blends prepared from additive‐free PP and commercial grade PS, which contained lubricant additives. The thermal transitions of PS and PP were measured using modulated DSC. Although the behavior of low PS concentration blends was similar in both systems, the characteristics of the high PS blends differed substantially. These differences and the contrast in the PP Tg behaviors were attributed to the migration of additives from the PS phase across the immiscible interface into the PP phase. Similar Tg variations were observed in blends of commercial grade PS and commercial grade PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Influence of styrene‐acrylate latexes with varied glass transition temperature (Tg) on cement hydration was studied and the mechanism was analyzed. Results show that polymer latexes with varied Tg retard cement hydration to different extents. Specifically, low Tg polymer shows stronger retardation effect than the high Tg polymer. Despite similar surface charges, colloidal particles with lower Tg exhibit higher affinity to surface of cement grains than the high Tg polymer, indicated by the higher adsorption amount and denser covering layer. The low Tg polymer experiences particle packing, deforming, and film forming processes along with the consumption of water during cement hydration, which eventually produces a covering layer of polymer surrounding cement grains. However, for the high Tg polymer, film forming process is absent. Consequently, the higher adsorption amount and the film‐formation process along with cement hydration are the two reasons for the stronger retardation effect of the low Tg polymer. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45264.  相似文献   

4.
The rapid development of two new classes of electrically active polymer materials, electronically conducting and electroactive polymers and ion-conducting polymers respectively, offers new possibilities for application of both classes of material, especially in combination with each other. While some of these combinations have been attempted before, they all met serious problems due to poor interpenetration of the two polymers. The recent availability of solubilized and soluble electroactive and conductive polymers has greatly advanced the possibilities of reducing the interpenetration problem. Some experimental studies using the combination of solubilized electroactive polypyrrole with poly(ethylene oxide) in an electroactive polymer blend electrode for solid-state polymer batteries are discussed. The opportunities for using polymer blends for solid-state electrochemical polymeric devices, and avenues for the development of materials for such devices, are also reviewed.  相似文献   

5.
Homogeneous grafting of styrene onto cellulose was carried out in a dimethylacetamide/lithium chloride solvent system. The grafted products were added to cellulose/polystyrene (PS) blends as compatibilizers. The thermal decomposition behavior of the blends was investigated by thermogravimetry. The thermal stability of the blends decreased with an increase in grafted product content. The crystallinity of the blends decreased with grafted product content. The microphase‐separated structures of the blends became finer with grafted product content. The glass transition temperatures for cellulose and PS in the blends were lowered with grafted product content. Differences in thermal decomposition behavior of the blends were correlated with compatibility. Thermogravimetry was effective for compatibility estimation in cellulose/PS blends containing grafted products. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
聚合物共混相容性研究进展   总被引:5,自引:0,他引:5  
介绍了聚合物共混相容性的热力学理论,讨论了相容性的实验表征方法,包括共混物形态和物性表征等,提出了改善聚合物相容性的重要途径及其进展。  相似文献   

7.
The possibility of combining the advantages of bioresorbable polymers blending and the modification of blend matrix with bioactive ceramic fillers was presented for the first time in order to obtain composite materials for biomedical applications. Two kinds of sol-gel-derived bioactive glasses: S2-high silica and A2-high lime content were combined with PCL/PLGA blend at different volume ratio, that is, 25/75, 50/50, and 75/25. Materials were fabricated in the form of thin films using a solvent casting method. The influence of these variables on surface properties (morphology, roughness, wettability), their mechanical performance, in vitro bioactivity and Saos-2 osteoblast-like cell response (cell viability, alkaline phosphatase activity), were successfully investigated. Due to the specificity of fabrication route, studies were conducted to examine the opposite surfaces of the films, that is, Petri dish glass- or air-exposed during casting. It was demonstrated that the PCL/PLGA ratio of blend matrix, as well as chemical composition of gel-derived bioactive glass particles, are two-key factors that allow altering the surface and mechanical properties of the materials in a wide range. This, in turn, modulates significantly the bioactivity of materials and the response of osteoblast-like cells. Our findings indicate the new possibilities of designing biodegradable and highly bioactive composite materials with potential osteogenic properties.  相似文献   

8.
将经过改进的Flory状态方程(EOS)理论,引入到三元均聚高分子共混体系,得到三元体系的Flory状态方程。通过对高聚物共混自由能(△G^m)的热力学判据的讨论,得出三元均聚高分子共混体系相容性的临界条件,从而推导出三元均聚高分子共混体系的Spinodal方程。  相似文献   

9.
刘倩  岳红  张慧军  庄昌清 《粘接》2011,(7):85-88
从分子模拟角度介绍如何模拟聚合物共混物相容性的方法,引入了溶解度参数和玻璃化温度。概括叙述了用分子模拟方法研究聚合物共混相容性的现状及应用,对分子模拟发展趋势作了展望。  相似文献   

10.
The effect of confinement on glass dynamics combined with the corresponding free volume changes of amorphous polystyrene (PS) in blends with semi‐crystalline high‐density polyethylene (HDPE) have been investigated using thermal analyses and positron annihilation lifetime spectroscopy (PALS). Two different glass transition temperatures (Tg) were observed in a PS/HDPE blend due to the dissimilarity in the chemical structure, consistent with an immiscible blend. However, Tg of PS in the incompatible PS/HDPE blend showed an upward trend with increasing PS content resulting from the confinement effect, while Tg of the semi‐crystalline HDPE component became lower than that of neat HDPE. Moreover, the elevation of Tg of PS was enhanced with a decrease of free volume radius by comparing annealed and unannealed PS/HDPE blends. Positron results showed that the free volume radius clearly decreased with annealing for all compositions, although the free volume hole size agreed well with linear additivity, indicating that there was only a weak interaction between the two components. Combining PALS with thermal analysis results, the confinement effect on the glass dynamics and free volume of PS phase in PS/HDPE blends could be attributed to the shrinkage of HDPE during crystallization when HDPE acted as the continuous phase. © 2015 Society of Chemical Industry  相似文献   

11.
Styrene–acrylonitrile copolymer (SAN)/acrylonitrile–styrene–acrylate terpolymer (ASA) blends (75/25, w/w) were toughened by blending with chlorinated polyethylene (CPE) and acrylic resin (ACR) at three different temperatures (?30, 0, and 25 °C). When the testing temperature was 0 and 25 °C, CPE played a key role in improving the impact strength of blends instead of ACR. However, an obvious synergistic toughening effect of CPE and ACR was observed at ?30 °C: when both 10 phr CPE and 15 phr ACR were added, the impact strength of the blends reached a peak at 7.50 kJ/m2, which was about two to three times higher than when 25 phr CPE or 25 phr ACR was introduced into the blends individually. Scanning electron microscopy, dynamic mechanical analysis, and surface energy measurements were used to investigate the toughening mechanism. Furthermore, other mechanical properties and the heat distortion temperatures were evaluated. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43958.  相似文献   

12.
聚合物共混材料中氢键的研究进展   总被引:1,自引:0,他引:1  
综述了近年来国内外聚合物共混材料中氢键的研究现状,着重对影响聚合物共混材料氢键强弱的因素、氢键的研究方法、氢键对聚合物共混材料性能的影响以及基于氢键作用制备相容性聚合物共混材料的方法进行总结。指出进一步研究多组分聚合物材料的氢键相互作用,可为制备可控性聚合物共混相容材料、实现功能化材料的构筑提供理论指导。  相似文献   

13.
Polymer alloys and blends, whose major advantage is the potential of achieving a range of physical and mechanical properties, have continued to be a subject of interest over recent years. Addition of a block or graft copolymer, with chemically similar segments to those involved in the polymer blend considered, led to a variety of desirable properties. The copolymer added to the blend functioned to promote a homogeneous dispersion of the constituent phases and to enhance their mutual adhesion. Such agents that enable better dispersion in polymer blends are known as compatibilizers. In this study an attempt has been made to improve the compatibility in a polymer blend composed of two normally incompatible constituents, LDPE and PA6, by addition of a compatibilizer. The compatibilizer agent, ethylene vinyl acetate (EVA), was added to the polymer blend in ratios of 1, 5, and 10% by using a twin‐screw extruder. The effect of EVA on the crystallization of the polymer constituents was observed through DSC examinations. Furthermore, the control sample and all three blends of LDPE/PA6/EVA were subjected to examinations to obtain their yield and tensile strengths, elasticity modulus, percentage elongation, izod impact strength, hardness, and melt flow index. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1748–1754, 2001  相似文献   

14.
Styrene‐acrylonitrile copolymer (SAN)/acrylonitrile‐styrene‐acrylate terpolymer (ASA) blends (75/25, wt/wt) was toughened by blending with impact modifiers including chlorinated polyethylene (CPE), hydrogenated nitrile butadiene rubber (HNBR), and butadiene rubber (BR) and the impact property was tested at four temperatures (–30, ?15, 0, and 25 °C). The combination of CPE and HNBR was imported to toughen the SAN/ASA blends, indicating that CPE and HNBR had similar toughening effect at room temperature but HNBR exhibited a better performance at low temperature. When a little HNBR was substituted by BR, the impact strength improved dramatically with the total content of impact modifiers keeping at 30 phr. After 15 phr CPE, 10 phr HNBR and 5 phr BR were employed into blends together, the impact strength reached to a peak of 14 kJ/m2 at ?30 °C while the impact strength of the blends individually toughened by 30 phr CPE or 30 phr HNBR was 5 or 12 kJ/m2, respectively. The toughening mechanism showed that the low glass‐transition temperature (–108 °C) of BR and the compatibilization between BR and matrix accounted for the improvement of toughness. Simultaneously, scanning electron microscopy, dynamic mechanical analysis, flexural and tensile properties, heat distortion temperature, and Fourier transform infrared spectroscopy were measured. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45364.  相似文献   

15.
In recent experimental work, it was found that the number of hydrogen bonds in polymer mixtures is strongly influenced by chain-connectivity effects and the spacing of functional groups along the chain. In this article, the relationships between the equilibrium constants used to describe the number of hydrogen bonds in mixtures of various types (blends, solutions, random copolymers, etc.) is elucidated and described. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 1273–1281, 1998  相似文献   

16.
Micro-thermal analysis (micro-TA) is a new subsurface thermal analysis technology. The average of the DC signal is a function of the thermal conductivity, and the response to the AC modulation signal is a function of the thermal diffusivity of the subsurface. Using this technique, three images based on topography, thermal conductivity, and thermal diffusivity are obtained simultaneously. Specific areas and domains in these images can then be characterized by simply positioning the probe and performing a localized thermal analysis experiment. The technique has been used to study the phase separation process in a 50:50 (by weight) polystyrene (PS)–poly(vinyl methyl ether) (PVME) blend and natural rubber–nitrile rubber blends. For these polymer blends, considerable contrast between phases is obtained, based on thermal conductivity, whereas optical and electron microscopy would show them as being very similar. For example, it is difficult to image the morphology of natural and nitrile rubber blends by means of transmission electron microscopy, because of their similar chemical structures. Micro-TA gives an excellent image of the morphology of these natural–nitrile rubber blends. This opens a new way for rubber industries to study morphologies of rubber–rubber blends in general. In the 50:50 PS–PVME blend, annealed at 125°C, spinodal decomposition occurred. With increasing time, the domain size and the glass transition temperature of PS-rich domains increased, indicating that the concentration of PVME in the PS-rich phases decreases. The results imply that micro-TA can be used to image the composition in the near-surface or surface regions in multicomponent materials, if the resolution is high enough. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2136–2141, 2001  相似文献   

17.
Dielectric relaxation spectroscopy using dielectric probes was applied to study the (glass transition) dynamics in binary blends of isotactic PP, PS and LDPE. The blends were prepared by melt-mixing and doped with 0.5% of the dielectric probe 4,4′-(N,N-dibutylamino)-(E)-nitrostilbene (DBANS) (van den Berg O, Sengers WGF, Jager WF, Picken SJ, Wübbenhorst M. Macromolecules 2004;37:2460. [17]). Due to the selective amplification of the dielectric relaxation processes related to the dynamic glass transition of the polymers, accurate relaxation data were obtained, even for the minor phases. No substantial influence of the blend composition and the blend morphology on the glass transition dynamics was found, indicating that both blend constituents behave like homogeneous bulk materials. The normalised relaxation strength of glass transition processes remained constant, regardless of the blend type and blend composition. This indicates that the probe molecule, DBANS, was equally distributed over the two blend components in all three polymer combinations PE-PP, PE-PS and PP-PS.  相似文献   

18.
Bonding between polymers through interdiffusion of macromolecules is a well-known mechanism of polymer adhesion. A new polymer bonding mechanism in the solid state, taking place at ambient temperatures well below the glass transition value (Tg), has been recently reported; in this mechanism, bulk plastic compression of polymer films held in contact led to adhesion over timescales of the order of a fraction of a second. In this study, we prepared various blends of plasticized polymer films with desirable ductility from amorphous and semicrystalline powders of hydroxypropyl methylcellulose and polyvinyl alcohol derivatives; then, we observed the bonding of these polymers at ambient temperatures, up to 80 K below Tg, purely through mechanical deformation. The deformation-induced bonding of the polymer films studied in this work led to interfacial fracture toughnesses in the range of 1.0–21.0 J/m2 when bulk plastic strains between 3% and 30% were imposed across the films. Scanning electron microscopy observation of the debonded interfaces also confirmed that bonding was caused by deformation-induced macromolecular mobilization and interpenetration. These results expand the range of applicability of sub-Tg, solid-state, deformation-induced bonding processes.  相似文献   

19.
S. Patlazhan  C. Serra  R. Muller 《Polymer》2006,47(17):6099-6106
The origin of shear-induced morphology of two-component immiscible reactive polymer blends is studied by the example of grafting and crosslinking multilayer systems of statistic terpolymer of ethylene, butyl acrylate, and maleic anhydride and statistic copolymers including polyamide and acid groups terminated by acid and/or amine groups. It is found that in contrast to the non-reactive system, the reactive polymer blends display pronounced hydrodynamic instabilities followed by the formation of branched fingers. The observed morphologies are shown to evolve towards the fractal structures. Their fractal dimensions depend on the type of chemical interactions between the blend components resulting either in grafted or crosslinked interfaces. It is shown that the obtained morphologies resemble the Laplacian growth patterns. A simple model of the interface chemical modifications is discussed to explain a physical origin of the observed shear-induced finger instability.  相似文献   

20.
A study of the thermal behavior of cured elastomeric blends of natural rubber (NR) and styrene butadiene rubber (SBR) prepared by solution blending in toluene is presented. Binary blends with different compositions of NR/SBR were produced using a conventional cure system based on sulfur and TBBS (n-t-butyl-2-benzothiazole sulfonamide as accelerator. The compounds were vulcanized at 433 K up to an optimum time of cure determined by rheometric tests. From swelling tests, the crosslink densities of the compounds were obtained and compared with those obtained in similar blends prepared by mechanical mixing. The results were analyzed in terms of the disentangling of the chain structures of the SBR and NR phases and the achieved cure state of the blend. Using differential scanning calorimetry, the glass transition temperature Tg of each blend was measured. In most compounds, the value of Tg corresponding to each phase of the blend was determined, but in some blends a single value of Tg was obtained. The variation of Tg with the composition and cure level in each phase was analyzed. On the other hand, a physical mixture of two equal parts of NR and SBR vulcanized was measured and the results were compared to those of the NR50/SBR50 cured blend. Besides, to analyze the influence of the network structure, pure NR and SBR unvulcanized samples were measured. On the basis of all the obtained results, the influence of the interphase formed in the blend between SBR and NR phases is discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号