首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
在LS方法基础上,提出了一种新的求解无约束最优化问题的共轭梯度法.新方法通过一个新的公式计算参数,克服了LS方法的数值效果不稳定和收敛性弱的缺点,并且在强Wolfe线搜索下证明了该方法具有充分下降性和全局收敛性.大量的数值试验表明新方法是稳定的、有效的.  相似文献   

2.
本文通过结合MFR方法与MDY方法,对搜索方向进行调整,提出了一类求解无约束优化问题的修正DY共轭梯度法,该法在每步迭代都能不依赖于任何搜索而自行产生充分下降方向.在适当的条件下,证明了在Armijo搜索下对于非凸的优化问题,本文算法是全局收敛的.数值实验表明本文算法是有效的.  相似文献   

3.
一类修正的DY共轭梯度法及其全局收敛性   总被引:2,自引:0,他引:2  
本文提出了一类求解无约束优化问题的修正DY共轭梯度法.算法采用新的迭代格式,每步迭代都可自行产生一个充分下降方向.采用Wolfe线搜索时,证明了全局收敛性.数值实验结果验证了算法是有效的.  相似文献   

4.
基于利用修正HS方法提高算法效率和利用DY方法保证算法的全局收敛性等思想,分别在不同条件下提出两种新的混合共轭梯度法求解大规模无约束优化问题.在一般Wlolfe线搜索下不需给定下降条件,证明了两个算法的全局收敛性,数值实验表明所提出算法的有效性,特别对于某些大规模无约束优化问题,数值表现较好.  相似文献   

5.
本文提出了一种求解无约束优化问题的修正PRP共轭梯度法.算法采用一个新的公式计算参数,避免了产生较小的步长.在适当的条件下,证明了算法具有下降性质,并且在采用强Wolfe线搜索时,算法是全局收敛的.最后,给出了初步的数值试验结果.  相似文献   

6.
基于共轭和下降性质,提出了一种强迫下降的三项共轭梯度法,证明了算法在Wolfe线搜索下的全局收敛性,并进行了数值比较实验.理论与数值试验结果表明这个算法是一个值得研究的方法.  相似文献   

7.
布谷鸟搜索算法(Cuckoo Search,CS)是基于群体智能的新型随机全局优化算法,具有控制参数少、搜索路径优和全局寻优能力强等优点,但也存在局部搜索能力较弱、收敛速度偏慢和收敛精度不够高等缺点。为了克服CS算法的缺点,提出一种基于共轭梯度的布谷鸟搜索算法(CGCS),使经过Levy飞行机制和淘汰机制进化后的布谷鸟种群沿着相互共轭的方向迅速下降.从而在保持算法的强大全局寻优能力的基础上大幅提高算法的收敛能力。用4个典型测试函数分别对CGCS算法和CS算法进行性能测试,结果表明,CGCS算法比CS算法具有更快的收敛速度、更高的收敛精度和更稳定的优化结果。CGCS算法同时具有很强的全局寻优能力、收敛能力和鲁棒性,特别适合多峰及高维函数的优化。  相似文献   

8.
本文在校正的DFP方法基础上,提出了一个新的三项梯度下降算法.该算法能够保证在每一步迭代中具有充分下降性,并在强Wolfe线搜索条件下对一般函数具有全局收敛性.数值试验表明它对给定的问题是非常有效的、稳定的.  相似文献   

9.
本文对无约束优化问题提出了一种新的非标准共轭梯度算法,该算法的搜索方向类似于曲线搜索算法的方向。证明了新算法的全局收敛性,并通过数值模拟验证了该算法是有效的和快速的。  相似文献   

10.
《软件》2017,(3):93-96
本文基于共轭梯度法的子空间研究,针对无约束优化问题提出了一种改进的无导数共轭梯度法。新算法不仅能有效弥补经典共轭梯度法要求线搜索为精确搜索的局限性,而且可适用于导数信息不易求得甚至完全不可得的问题。实验结果表明:相比于一次多项式插值法、有限差商共轭梯度法以及有限差商拟牛顿法,新算法的效率有很大的提高。  相似文献   

11.
《国际计算机数学杂志》2012,89(16):3436-3447
Sufficient descent condition is very crucial in establishing the global convergence of nonlinear conjugate gradient method. In this paper, we modified two conjugate gradient methods such that both methods satisfy this property. Under suitable conditions, we prove the global convergence of the proposed methods. Numerical results show that the proposed methods are efficient for the given test problems.  相似文献   

12.
In this paper, two modified spectral conjugate gradient methods which satisfy sufficient descent property are developed for unconstrained optimization problems. For uniformly convex problems, the first modified spectral type of conjugate gradient algorithm is proposed under the Wolfe line search rule. Moreover, the search direction of the modified spectral conjugate gradient method is sufficiently descent for uniformly convex functions. Furthermore, according to the Dai–Liao's conjugate condition, the second spectral type of conjugate gradient algorithm can generate some sufficient decent direction at each iteration for general functions. Therefore, the second method could be considered as a modification version of the Dai–Liao's algorithm. Under the suitable conditions, the proposed algorithms are globally convergent for uniformly convex functions and general functions. The numerical results show that the approaches presented in this paper are feasible and efficient.  相似文献   

13.
14.
The conjugate gradient method is an effective method for large-scale unconstrained optimization problems. Recent research has proposed conjugate gradient methods based on secant conditions to establish fast convergence of the methods. However, these methods do not always generate a descent search direction. In contrast, Y. Narushima, H. Yabe, and J.A. Ford [A three-term conjugate gradient method with sufficient descent property for unconstrained optimization, SIAM J. Optim. 21 (2011), pp. 212–230] proposed a three-term conjugate gradient method which always satisfies the sufficient descent condition. This paper makes use of both ideas to propose descent three-term conjugate gradient methods based on particular secant conditions, and then shows their global convergence properties. Finally, numerical results are given.  相似文献   

15.
In this paper, a DL-type conjugate gradient method is presented. The given method is a modification of the Dai–Liao conjugate gradient method. It can also be considered as a modified LS conjugate gradient method. For general objective functions, the proposed method possesses the sufficient descent condition under the Wolfe line search and is globally convergent. Numerical comparisons show that the proposed algorithm slightly outperforms the PRP+ and CG-descent gradient algorithms as well as the Barzilai–Borwein gradient algorithm.  相似文献   

16.
This paper establishes a spectral conjugate gradient method for solving unconstrained optimization problems, where the conjugate parameter and the spectral parameter satisfy a restrictive relationship. The search direction is sufficient descent without restarts in per-iteration. Moreover, this feature is independent of any line searches. Under the standard Wolfe line searches, the global convergence of the proposed method is proved when |βk|βkFR holds. The preliminary numerical results are presented to show effectiveness of the proposed method.  相似文献   

17.
We propose a new optimization problem which combines the good features of the classical conjugate gradient method using some penalty parameter, and then, solve it to introduce a new scaled conjugate gradient method for solving unconstrained problems. The method reduces to the classical conjugate gradient algorithm under common assumptions, and inherits its good properties. We prove the global convergence of the method using suitable conditions. Numerical results show that the new method is efficient and robust.  相似文献   

18.
Conjugate gradient methods are widely used for solving unconstrained optimization and nonlinear equations, specially in large-scale cases. Since they own the attractive practical factors of simple computation and low memory requirement, interesting theoretical features of curvature information and strong global convergence. In this paper, we present a modified conjugate gradient algorithm by line search method with acceleration scheme for nonlinear symmetric equations. Furthermore, the proposed method not only possess descent property but also owns global convergence in mild conditions. Numerical results also indicate that the presented method is much more effective than the other methods for the test problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号