首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
陶瓷基复合材料制备温度过高一直是制约其引入主动冷却工艺、突破其本征使用温度的主要原因之一。采用差热(TG-DTA)、红外(IR)、X射线衍射(XRD)等分析测试手段,研究了聚碳硅烷(Polycarbosilane,PCS)的裂解及化学转化过程,从理论上说明了先驱体聚碳硅烷(PCS)低温(1000℃)陶瓷化的可行性。结果表明:聚碳硅烷在750℃实现无机化,880℃开始结晶,即聚碳硅烷在高温合金耐受温度范围(1000℃)内,即可实现陶瓷化。以聚碳硅烷(PCS)为先驱体,炭纤维为增强体,采用先驱体浸渍裂解(PIP)工艺低温制备了炭纤维增强碳化硅(C/SiC)陶瓷基复合材料,当制备温度为900℃时,所制备C/SiC复合材料密度为1.70g/cm3,弯曲强度达到657.8MPa,剪切强度为61.02MPa,断裂韧性为22.53MPa.m1/2,并采用扫描电子显微镜(SEM)对复合材料的微观形貌进行了分析。  相似文献   

2.
Cf/SiC复合材料制备工艺研究   总被引:1,自引:1,他引:1  
结合材料复合过程中纤维编织体易变形的问题,系统研究了复合材料制备过程中编织体变形的规律,以及对所制备复合材料结构和性能的影响.通过实验研究发现,编织体体积控制有利于复合材料增强体纤维的均匀分布,实现复合材料结构和性能的均一化,有利于复合材料整体性能的提高,并且,编织体体积控制有利于提高复合材料的致密化速率,最终获得高致密度、高性能的复合材料.  相似文献   

3.
C/SiC复合材料的常压制备与性能研究   总被引:1,自引:0,他引:1  
采用聚碳硅烷作为碳化硅先驱体, 以二维0°/90°正交编织碳布叠层后作为增强体, 采用真空压力浸渍的方法制备了C/SiC复合材料, 研究了裂解温度和浆料浓度对复合材料性能的影响. 结果表明: 复合材料的弯曲强度随着裂解温度的升高以及浆料浓度的增加都呈增加趋势; 基体在纤维束内部分布均匀, 但依然有一些小气孔存在; 在1100℃时, 基体中开始生成一定量的β-SiC相, 复合材料的三点弯曲强度达到232MPa, 断裂韧性达到10.50MPa·m1/2. 在断裂过程中表现出明显的韧性断裂, 断口有较长的纤维拔出.  相似文献   

4.
三维针刺C/SiC复合材料显微结构演变分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以三维针刺碳毡作为预制体,采用树脂浸渍-热解工艺制备C/C多孔体,然后采用反应熔体浸渍法(Reactive melt infiltration,RMI)对C/C多孔体分别浸渗Si和Si-Mo合金制备C/SiC复合材料。首先研究了C/C多孔体制备过程中的显微结构演变。结果表明,浸渍过程中树脂主要填充在纤维束内小孔隙中,热解后裂纹增多,生成网格状C/C亚结构单元;高温热处理使C/C复合材料裂纹进一步扩展,石墨化度提高,束内闭气孔打开,从而为RMI渗Si提供通道。然后对C/C多孔体分别渗Si和Si-Mo合金所得材料的物相组成和显微结构进行对比分析。发现纯Si浸渗得到的复合材料残余Si较多,束内纤维受损严重;而浸渗Si-Mo合金可以减少残余Si含量,束内纤维受损轻微,仍保持着完整的C/C亚结构单元。  相似文献   

5.
低分子量聚碳硅烷制备3D-Cf/SiC复合材料   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了低分子量聚碳硅烷 (PCS) 通过先驱体浸渍裂解 (PIP) 工艺制备Cf/SiC复合材料。分析表明:PCS的数均分子量为400,活性较强,陶瓷化产率为70%左右,在1200℃基本转化为微晶态的β-SiC。分别通过3种不同升温速率制备了3D-Cf/SiC复合材料试样,其弯曲强度分别为745.2MPa、686.7MPa和762.5MPa,明显高于文献报道3D-Cf/SiC复合材料弯曲强度300~500MPa的水平。试样断口的SEM照片均显示长的纤维拔出,有良好的增韧效果,低分子量PCS裂解得到的基体比较致密。实验结果说明,低分子量PCS适合于制备3D-Cf/SiC复合材料,并且提高升温裂解速率对材料性能影响很小。   相似文献   

6.
以聚碳硅烷(PCS)、羰基铁(Fe(CO)_5)、二乙烯基苯(DVB)和碳化硅(SiC)纤维为原料,采用先驱浸渍裂解工艺制备含铁碳化硅纤维增强碳化硅基(SiC_f/SiC)复合材料,研究了原料配比对交联反应的影响,以及浸渍次数对复合材料致密度及陶瓷产率的影响。研究表明:当羰基铁添加量为20%(质量分数),二乙烯基苯为5%(质量分数)时有利于基体交联的进行;经1100℃裂解后基体中可明显观察到β-SiC晶体的生成;经5次浸渍裂解,制得的复合材料密度为1.72g/cm~3,孔隙率为20.43%,陶瓷产率得到提高,达到82.67%。  相似文献   

7.
采用注凝成型工艺在碳纤维编织件中引入SiC微粉,然后采用先驱体转化法进一步致密化,以缩短C/SiC复合材料的制备周期.考察了不同固相含量的SiC浆料对制备周期、密度、孔隙率及力学性能的影响.结果表明,注凝成型工艺引入的SiC微粉分布在纤维束间,当固相含量达到30%(体积分数)时,后期PIP工艺周期数比PCS/二甲苯溶液反复浸渍-裂解所用周期数缩短了1/3,但引入的SiC微粉对材料力学性能影响较大.  相似文献   

8.
赵爽  杨自春  周新贵 《材料导报》2018,32(16):2715-2718
通过先驱体浸渍裂解工艺结合化学气相渗透工艺(PIP+CVI)制备了二维半(2.5D)和三维(3D)编织结构的碳化硅纤维增强碳化硅基(SiC/SiC)复合材料,对两者的密度、热导率、力学性能以及微观结构等进行了测试分析。结果表明,PIP+CVI工艺制备的SiC/SiC复合材料具有较低的密度(1.98~2.43g·cm-3)和热导率(0.85~2.08 W·m~(-1)·K~(-1)),初期CVI纤维涂层能够提高纤维-基体界面剪切强度(~141.0 MPa),从而提高SiC/SiC复合材料的力学性能,后期CVI整体涂层明显提高了2.5DSiC/SiC复合材料的密度、热导率和力学性能,对3DSiC/SiC复合材料性能的影响不明显。  相似文献   

9.
以可再生的资源无水乙醇为前驱体,在负压条件下,沉积温度为900℃~1200℃,采用压力梯度CVI工艺制备C/C复合材料.考察了沉积时间与密度的变化规律,采用偏光显微镜和扫描电镜观察了材料的组织结构和断口形貌,利用三点弯曲测定了材料的弯曲强度.结果表明:采用乙醇为前驱体,可大幅度提高致密化效率,96h制备出密度为1.47g/cm3的C/C复合材料;易于获得高织构的组织,制备试样的热解炭组织以粗糙层为主,断裂方式为假塑性断裂.乙醇是一种很有应用前景的制备C/C复合材料的前驱体.  相似文献   

10.
采用先驱体转化法(PIP)以酚醛和沥青为先驱体在SiC纤维表面涂覆碳层,并制备SiCf/SiC复合材料;优化了两种碳涂层制备工艺;分析了涂层后纤维的表面形貌并测试涂层厚度;研究了两种碳涂层对两种SiC纤维(普通和含铝)及复合材料力学性能的影响.  相似文献   

11.
本文采用先驱体裂解-热压烧结方法制备出了Cf/SiC复合材料,并重点研究了复合材料的致密化过程.结果表明,复合材料主要是通过液相烧结而得到致密化的.由于复合材料中聚碳硅烷(PCS)的裂解不仅有利于烧结液相的形成,而且形成了大量的纳米级SiC颗粒,因此,复合材料能够在较低烧结温度下得到较好的致密化,从而使复合材料具有较好的力学性能.  相似文献   

12.
三维碳化硅/碳化硅陶瓷基编织体复合材料   总被引:4,自引:0,他引:4  
采用化学气相浸渗法(CVI),制备出三维Hi-Nicalon SiC/SiC陶瓷基纺织体复合材料,经30hCVI致密化处理后,复合材料的密度达到2.5g.cm^-3。所研制的三维SiC/SiC复合材料不仅具有较高的强度,而且表现出优异的韧性和类似金属材料非灾难性的断裂特征,复合材料的主要功能力学性能指标为:弯曲强度860MPa,断裂位移1.2mm,断裂韧性41.5MPa.m^1/2,断裂功28.1kJ.m^-2,冲击韧性360.0kJ.m^-2。  相似文献   

13.
三维碳化硅/碳化硅陶瓷基编织体复合材料   总被引:3,自引:0,他引:3  
采用化学气相浸渗法(CVI),制备出三维Hi-NicalonSiC/SiC陶瓷基编织体复合材料.经30h CVI致密化处理后,复合材料的密度达到 259·cm-3,所研制的三维 SiC/SiC复合材料不仅具有较高的强度,而且表现出优异的韧性和类似金属材料非灾难性的断裂特征.复合材料的主要力学性能指标为:弯曲强度 860MPa,断裂位移 1.2mm,断裂韧性41.5MPa·m1/2,断裂功28.1kJ·m-2,冲击韧性36.0kJ·m-2.  相似文献   

14.
T300碳纤维热处理对Cf/SiC复合材料性能的影响   总被引:1,自引:0,他引:1  
以聚碳硅烷先驱体浸渍裂解工艺制备T300碳纤维增强3D Cf/SiC复合材料,研究了T300碳纤维预先热处理对材料性能的影响.结果表明,热处理能够弱化Cf/SiC复合材料中纤维-基体界面结合,减少碳纤维在复合过程的损伤,显著提高复合材料性能.纤维经热处理后制备的Cf/SiC复合材料弯曲强度和断裂韧性分别从未经处理的154MPa,4.8MPa·m1/2提高到437MPa,20.4 MPa·m1/2.  相似文献   

15.
先驱体浸渍-热解(PIP)法是制备连续纤维增强SiC基陶瓷的主要方法之一。介绍了PIP工艺的特点、对PIP工艺制备G/SiC和SiCJSiC复合材料的工作结果做了统计,概括了PIP工艺优化、填充剂、纤维预处理和表面涂层、低成本制造路线、陶瓷先驱体选择和合成方面的研究进展,分析了现有PIP工艺存在的问题,提出了在现有工艺水平上可以显著提高产品性能和产能的设备设施改进措施,包括建立高等级净化室和浸渍-固化-热解设备-体化。  相似文献   

16.
自加热化学气相法制备连续碳纤维增强碳化硅复合材料   总被引:5,自引:0,他引:5  
通过自加热化学气相渗积法制备了Cf/SiC复合材料,对其力学性能进行了测试与分析,运用SEM对复合材料显微结构和断口形貌进行了分析,研究表明:自加热化学气相渗积法具有较快的渗积速率;气体流量的适度增加可改善复合材料的性能;碳涂层的厚度对复合材料的力学性能有较大的影响,适合的涂层厚度在0.35~0.55μm之间。  相似文献   

17.
本文通过先热压后先驱体浸渍裂解工艺制备 3D BCf SiC陶瓷基复合材料 ,以期达到缩短材料制备周期的目的。着重对热压温度、压力、时间等因素进行了研究 ,得到了可优化材料性能的工艺参数  相似文献   

18.
以先驱体浸渍裂解工艺制备了Cf/Sic复合材料,在相同工艺条件下,研究了四种纤维织构:2.5D,三维四向,三维五向,三维六向对复合材料结构和性能的影响.研究结果表明,2.5D纤维织构的复合材料,其力学性能优于其它三种织构的复合材料,2.5D织构的复合材料弯曲强度达到了406.25MPa,三维四向织构复合材料弯曲强度只有128.80MPa,三维五向织构复合材料159.74MPa,三维六向织构复合材料150.42MPa,并结合纺织学的结构理论对这种影响进行了剖析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号