首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work utilizes the mechanistic modeling approach for predicting cutting forces and simulating the milling process of fiber-reinforced polymers (FRP) with a straight cutting edge. Specific energy functions were developed by multiple regression analysis (MR) and committee neural network approximation (CN) of milling force data and a cutting model was developed based on these energies and the cutting geometry. It is shown that both MR and CN models are capable of predicting the cutting forces in milling of unidirectional and multidirectional composites. Model predictions were compared with experimental data and were found to be in good agreement over the entire range of fiber orientations from 0 to 180°. Furthermore, CN model predictions were found to greatly outperform MR model predictions.  相似文献   

2.
Modeling of residual stresses in milling   总被引:1,自引:0,他引:1  
A model to predict residual stresses produced from milling is presented. It uses process conditions as inputs and predicts surface and subsurface residual stress profiles due to milling. The model formulation incorporates cutting force and cutting temperature predictions and utilizes those parameters to define the thermomechanical loading experienced by the workpiece. Model predictions are compared with published experimental data for both cutting forces and residual stress profiles. The results show that the model performs well in predicting residual stress trends for various milling conditions. Residual stress magnitudes as well as profiles are well predicted with the modeling approach.  相似文献   

3.
An Enhanced Force Model for Sculptured Surface Machining   总被引:1,自引:0,他引:1  
The ball-end milling process is used extensively in machining of sculpture surfaces in automotive, die/mold, and aerospace industries. In planning machining operations, the process planner has to be conservative when selecting machining conditions with respect to metal removal rate in order to avoid cutter chipping and breakage, or over-cut due to excessive cutter deflection. These problems are particularly important for machining of sculptured surfaces where axial and radial depths of cut are abruptly changing. This article presents a mathematical model that is developed to predict the cutting forces during ball-end milling of sculpture surfaces. The model has the ability to calculate the workpiece/cutter intersection domain automatically for a given cutter path, cutter, and workpiece geometries. In addition to predicting the cutting forces, the model determines the surface topography that can be visualized in solid form. Extensive experiments are performed to validate the theoretical model with measured forces. For complex part geometries, the mathematical model predictions were compared with experimental measurements.  相似文献   

4.
In this paper, a mechanistic model to formulate the nonlinear three-dimensional (3-D) cutting forces of taper end-mills by means of differential geometry is presented. The relationship between the tool geometry and the cutting force directions is analyzed. A cutting coefficient estimation procedure is developed. The model is verified by milling carbon steel specimens. For a set of given cutting conditions, the results show close agreement between the measured cutting forces and the model predictions.  相似文献   

5.
Abstract

The ball-end milling process is used extensively in machining of sculpture surfaces in automotive, die/mold, and aerospace industries. In planning machining operations, the process planner has to be conservative when selecting machining conditions with respect to metal removal rate in order to avoid cutter chipping and breakage, or over-cut due to excessive cutter deflection. These problems are particularly important for machining of sculptured surfaces where axial and radial depths of cut are abruptly changing. This article presents a mathematical model that is developed to predict the cutting forces during ball-end milling of sculpture surfaces. The model has the ability to calculate the workpiece/cutter intersection domain automatically for a given cutter path, cutter, and workpiece geometries. In addition to predicting the cutting forces, the model determines the surface topography that can be visualized in solid form. Extensive experiments are performed to validate the theoretical model with measured forces. For complex part geometries, the mathematical model predictions were compared with experimental measurements.  相似文献   

6.
An enhanced model for predicting worn tool cutting forces in metal cutting without the need for any worn tool calibration tests is presented in this paper. The new model utilizes a previously developed slip-line field approach in conjunction with a mechanistic force model to predict the shear flow stress and shear angle for a range of cutting conditions with only a minimal number of sharp tool calibration tests. The shear flow stress and shear angle values are then used as inputs into a worn tool force model to predict the cutting forces due to tool flank wear. Predictions of worn tool cutting forces from the new model have been compared to experimental data from both a steel and a ductile iron workpiece. Ductile iron tests are significant because previous shear flow stress and shear angle models require chip measurements which cannot be made with the chips produced by iron workpieces. Model predictions are also compared to literature data obtained using an aluminum workpiece. An excellent comparison between the model predictions and the experimental data is found for all of the materials considered.  相似文献   

7.
The analysis of the cutting force in micro end milling plays an important role in characterizing the cutting process, as the tool wear and surface texture depend on the cutting forces. Because the depth of cut is larger than the tool edge radius in conventional cutting, the effect of the tool edge radius can be ignored. However, in micro cutting, this radius has an influence on the cutting mechanism. In this study, an analytical cutting force model for micro end milling is proposed for predicting the cutting forces. The cutting force model, which considers the edge radius of the micro end mill, is simulated. The validity is investigated through the newly developed tool dynamometer for the micro end milling process. The predicted cutting forces were consistent with the experimental results.  相似文献   

8.
9.
A mechanistic model is developed to predict micromilling forces with flat end mill for both shearing and ploughing-dominant cutting regimes. The model assumes that there is a critical chip thickness that determines whether a chip will form or not. Numerical method is extended to predict the chatter stability in micro end milling, which is performed based on the proposed cutting force model. The simulating procedure for predicting stability and cutting forces is presented in detail, and the stability diagram is constructed. The validation experiments are conducted to verify the simulation results. Both experimental cutting forces measured and machined workpiece surface scanned through digital microscope are analyzed and used to verify the proposed model.  相似文献   

10.
Development of an automatic arc welding system using SMAW process   总被引:1,自引:0,他引:1  
In end milling of pockets, variable radial depth of cut is generally encountered as the end mill enters and exits the corner, which has a significant influence on the cutting forces and further affects the contour accuracy of the milled pockets. This paper proposes an approach for predicting the cutting forces in end milling of pockets. A mathematical model is presented to describe the geometric relationship between an end mill and the corner profile. The milling process of corners is discretized into a series of steady-state cutting processes, each with different radial depth of cut determined by the instantaneous position of the end mill relative to the workpiece. For the cutting force prediction, an analytical model of cutting forces for the steady-state machining conditions is introduced for each segmented process with given radial depth of cut. The predicted cutting forces can be calculated in terms of tool/workpiece geometry, cutting parameters and workpiece material properties, as well as the relative position of the tool to workpiece. Experiments of pocket milling are conducted for the verification of the proposed method.  相似文献   

11.
A theoretical cutting force model for helical end milling with cutter runout is developed using a predictive machining theory, which predicts cutting forces from the input data of workpiece material properties, tool geometry and cutting conditions. In the model, a helical end milling cutter is discretized into a number of slices along the cutter axis to account for the helix angle effect. The cutting action for a tooth segment in the first slice is modelled as oblique cutting with end cutting edge effect and tool nose radius effect, whereas the cutting actions of other slices are modelled as oblique cutting without end cutting edge effect and tool nose radius effect. The influence of cutter runout on chip load is considered based on the true tooth trajectories. The total cutting force is the sum of the forces at all the cutting slices of the cutter. The model is verified with experimental milling tests.  相似文献   

12.
Mechanistic cutting constants serve well in predicting milling forces, monitoring the milling process as well as in helping to understand the mechanistic phenomena of a machining process for a unique pair of workpiece and cutter materials under various types of cutting edge geometry. This paper presents a unified approach in identifying the six shearing and ploughing cutting constants for a general helical end mill from the dynamic components of the measured milling forces in a single cutting test. The identification model is first presented assuming the milling force is measured with a known phase angle of the cutter spindle. When the phase angle of the cutter rotation is not available, as is the case for most milling machines, it is shown that the true phase angle can be identified through the theoretical phase relationship between the different harmonic components of the milling forces measured with an arbitrary phase angle. The numerical simulation and the experimental results for ball and cylindrical end mills are presented to demonstrate and validate the identification methods.  相似文献   

13.
A new analytical cutting force model is presented for oblique cutting. Orthogonal cutting theory based on unequal division shear zone is extended to oblique cutting using equivalent plane approach. The equivalent plane angle is defined to determine the orientation of the equivalent plane. The governing equations of chip flow through the primary shear zone are established by introducing a piecewise power law distribution assumption of shear strain rate. The flow stress is calculated from Johnson-cook material constitutive equation. The predictions were compared with test data from the available literature and showed good correlation. The proposed model of oblique cutting was applied to predict the cutting forces in end milling. The helical flutes are decomposed into a set of differential oblique cutting edges. To every engaged tooth element, the differential cutting forces are obtained from oblique cutting process. Experiments on machining AISI 1045 steel under different cutting conditions were conducted to validate the proposed model. It shows that the predicted cutting forces agree with the measurements both in trends and values.  相似文献   

14.
王殿龙  康德纯 《工具技术》2001,35(11):13-15
借助建立的铣刀切削力、扭矩和切削功率的计算机预报模型 ,对平前刀面球头铣刀的切削性能进行了数值仿真研究 ;通过分析各种切削参数对切削性能的影响规律 ,获得了不同切削条件下球头铣刀切削力和扭矩的特征和变化趋势  相似文献   

15.
Micro-end milling is used for manufacturing of complex miniaturized components precisely in wide range of materials. It is important to predict cutting forces accurately as it plays vital role in controlling tool and workpiece deflections as well as tool wear and breakage. The present study attempts to incorporate process characteristics such as edge radius of cutting tool, effective rake and clearance angles, minimum chip thickness, and elastic recovery of work material collectively while predicting cutting forces using mechanistic model. To incorporate these process characteristics effectively, it is proposed to divide cutting zone into two regions: shearing- and ploughing-dominant regions. The methodology estimates cutting forces in each partitioned zone separately and then combines the same to obtain total cutting force at a given cutter rotation angle. The results of proposed model are validated by performing machining experiments over a wide range of cutting conditions. The paper also highlights the importance of incorporating elastic recovery of work material and effective rake and clearance angle while predicting cutting forces. It has been observed that the proposed methodology predicts the magnitude and profile of cutting forces accurately for micro-end milling operation.  相似文献   

16.
5-axis milling operations are common in several industries such as aerospace, automotive and die/mold for machining of sculptured surfaces. In these operations, productivity, dimensional tolerance integrity and surface quality are of utmost importance. Part and tool deflections under high cutting forces may result in unacceptable part quality whereas using conservative cutting parameters results in decreased material removal rate. Process models can be used to determine the proper or optimal milling parameters for required quality with higher productivity. The majority of the existing milling models are for 3-axis operations, even the ones for ball-end mills. In this article, a complete geometry and force model are presented for 5-axis milling operations using ball-end mills. The effect of lead and tilt angles on the process geometry, cutter and workpiece engagement limits, scallop height, and milling forces are analyzed in detail. In addition, tool deflections and form errors are also formulated for 5-axis ball-end milling. The use of the model for selection of the process parameters such as lead and tilt angles that result in minimum cutting forces are also demonstrated. The model predictions for cutting forces and tool deflections are compared and verified by experimental results.  相似文献   

17.
在对螺旋棒铣刀铣削力建模中考虑了切削厚度变化对铣削力影响的指数关系、铣刀偏心对实际切削厚度、切入与切出角、铣削力波动的影响,并提出采用实测各刀齿铣削最大值比求解铣刀偏心和识别铣削力系数的方法。在考虑铣刀偏心因素的情况下仿真与实测的铣削力达到非常好的一致性。提出的铣削力仿真方法充分反映了铣削力的实际状态,提高了铣削力仿真精度。  相似文献   

18.
MODELING OF 5-AXIS MILLING PROCESSES   总被引:2,自引:0,他引:2  
5-axis milling operations are common in several industries such as aerospace, automotive and die/mold for machining of sculptured surfaces. In these operations, productivity, dimensional tolerance integrity and surface quality are of utmost importance. Part and tool deflections under high cutting forces may result in unacceptable part quality whereas using conservative cutting parameters results in decreased material removal rate. Process models can be used to determine the proper or optimal milling parameters for required quality with higher productivity. The majority of the existing milling models are for 3-axis operations, even the ones for ball-end mills. In this article, a complete geometry and force model are presented for 5-axis milling operations using ball-end mills. The effect of lead and tilt angles on the process geometry, cutter and workpiece engagement limits, scallop height, and milling forces are analyzed in detail. In addition, tool deflections and form errors are also formulated for 5-axis ball-end milling. The use of the model for selection of the process parameters such as lead and tilt angles that result in minimum cutting forces are also demonstrated. The model predictions for cutting forces and tool deflections are compared and verified by experimental results.  相似文献   

19.
Prediction of cutting forces in helical milling process   总被引:6,自引:3,他引:3  
The prediction of cutting forces is important for the planning and optimization of machining process in order to reduce machining damage. Helical milling is a kind of hole-machining technique with a milling tool feeding on a helical path into the workpiece, and thus, both the periphery cutting edges and the bottom cutting edges all participated in the machining process. In order to investigate the characteristics of discontinuous milling resulting in the time varying undeformed chip thickness and cutting forces direction, this paper establishes a novel analytic cutting force model of the helical milling based on the helical milling principle. Dynamic cutting forces are measured and analyzed under different cutting parameters for the titanium alloy (Ti–6Al–4V). Cutting force coefficients are identified and discussed based on the experimental test. Analytical model prediction is compared with experiment testing. It is noted that the analytical results are in good agreement with the experimental data; thus, the established cutting force model can be utilized as an effective tool to predict the change of cutting forces in helical milling process under different cutting conditions.  相似文献   

20.
Cutting force prediction for ball nose milling of inclined surface   总被引:2,自引:2,他引:0  
Ball nose milling of complex surfaces is common in the die/mould and aerospace industries. A significant influential factor in complex surface machining by ball nose milling for part accuracy and tool life is the cutting force. There has been little research on cutting force model for ball nose milling on inclined planes. Using such a model ,and by considering the inclination of the tangential plane at the point of contact of the ball nose model, it is possible to predict the cutting force at the particular cutting contact point of the ball nose cutter on a sculptured surface. Hence, this paper presents a cutting force model for ball nose milling on inclined planes for given cutting conditions assuming a fresh or sharp cutter. The development of the cutting force model involves the determination of two associated coefficients: cutting and edge coefficients for a given tool and workpiece combination. A method is proposed for the determination of the coefficients using the inclined plane milling data. The geometry for chip thickness is considered based on inclined surface machining with overlapping of previous pass. The average and maximum cutting forces are considered. These two forces have been observed to be more dominating force-based parameters or features with high correlation with tool wear. The developed cutting force model is verified for various cutting conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号