首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
This study examines further the phenomena of the modification of coal carbonizations by organic additives. Anthracene, pyrene and chrysene modify the carbonization in a closed system of coking coals as observed from increases in the size of optical textures of resultant cokes. Weakly caking coals are unaffected. Chrysene is the most efficient modifier probably because of its lowest calculated free valence. The co-additives tetralin and hydrogenated anthracene oil further enhance the modification processes so obviating the necessity to use hydrogenated additives. Co-carbonizations of oxidized coking and caking coals with decacyclene are effective in removing the effects of mild oxidation. Increased rates of carbonization enhance the sizes of optical textures of resultant cokes.  相似文献   

2.
Two coking coals, a caking and a non-caking coal are examined in a Bruker pulsed 1H n.m.r. spectrometer in the temperature range 293–730 K. One coking and the caking coal are oxidized in air at 383 K for 13 days. Temperatures of signal appearance and loss are noted as well as the temperatures of minimum signal half-peak width (ΔH12). There occurs no change in the above three temperatures with oxidation of the coals. The variation of (ΔH12) with temperature of the coal is also measured. Changes in (ΔH12) are more pronounced for the caking coal. The softening and solidification temperatures are below and above, respectively, those reported using the Gieseler method. Values of (ΔH12) increase beyond the minimum value as the fluidity continues to increase. This may be caused by an increase in average molecular weight of constituent molecules and/or an increasing concentration of free radicals in the fluid phase. This experimental approach may afford a new method to characterize coals which are to be used in liquefaction processes.  相似文献   

3.
Alan Grint  Harry Marsh 《Fuel》1981,60(12):1115-1120
Laboratory investigations of strength of cokes from blends of coals incorporating pitch were supported by 7 kg trials. The stronger cokes showed a greater interaction between coal and pitch to produce an interface component of anisotropic mozaics which is relatively resistant to crack propagation. The process whereby coal is transformed into coke includes the formation of a fluid zone in which develop nematic liquid crystals and anisotropic carbon which is an essential component of metallurgical coke. Strength, thermal and oxidation resistance of coke can be discussed in terms of the size and shape of the anisotropic carbon which constitutes the optical texture of pore-wall material of coke. Coals of different rank form cokes with different optical textures. Blending procedures of non-caking, caking and coking coals involve the interactions of components of the blend to form mesophase and optical texture. Petroleum pitches used as additives are effective in modifying the carbonization process because of an ability to participate in hydrogen transfer reactions.  相似文献   

4.
Atul Kumar Varma 《Fuel》2002,81(10):1321-1334
The coal quality, temperature, pressure, heating rate, various processes and reactor type affect coking behaviour of coal and resulting coke properties. Several petrographic and chemical methods were proposed earlier for prediction of coking behaviour of coals. Inertinite rich coal samples (Immf>30 vol%) having different petrographic compositions were selected for thermogravimetric investigations (DTA, DTG and TGA) and their coking behaviour was studied. The petrographic build up, micro-structural properties (porosity and cell wall thickness) and mechanical strength of the resulted cokes were also investigated. ΔH and ΔHmax (the main endothermic area of heat absorption and fast absorbing main endothermic area, respectively) were distinguished in DTA curves. ΔA and ΔAmax (the main decomposition area and fast disintegrating main decomposition area) under DTG curves were identified. ΔHmaxAmax shows good correlation with Roga's indices (RI, caking properties) as well as with petrographic caking ratio (PCR). The coarse mosaic content of cokes seem to depend on LΔTmaxTmax (ratio of weight loss during fast decomposing main reaction to temperature difference) under DTG. LmΔTT (ratio of weight loss during main decomposing reaction to temperature difference) under DTG exhibits correlation with p1 (mean pore size) and t1 (mean cell wall thickness) of cokes. ΔAmax/(LmΔTmax) also indicates good relationship with mechanical strength of cokes. (LmΔTATB)/(LmΔT) (i.e. ratio of weight loss during main endothermic reaction under DTA to weight loss during main decomposing reaction) appears to have relationship with DD (compactness) of cokes. The course of main endothermic reaction/main decomposition reaction under DTA, DTG and TGA seems to govern coking behaviour and the resulting coke strength, which in turn is controlled by microlithotypes.  相似文献   

5.
Alan Grint  Harry Marsh 《Fuel》1981,60(6):519-521
Cokes were prepared in a 7 kg oven from blends of high-volatile and low-volatile caking coals, using ratios of 1:1 and 3:7. To the 1:1 blend was added 7.5% of either Ashland A240 or A170 petroleum pitch or SFBP petroleum pitch 1. Micum m30 and m10 indices were determined on cokes from the 7 kg oven, using the 15 Micum drum. Optical textures were assessed using polarized light microscopy of polished surfaces of cokes. The effect of additive is to increase the strength of cokes. The pitch can be an effective replacement of low-volatile caking coal. The analysis by optical microscopy shows that with the stronger cokes from the 7 kg oven there has occurred an interaction between the coal and pitch at the interface of coal particles to produce a solution or fluid phase which carbonizes to a coke with an optical texture of fine-grained mozaics. This material could be responsible for the enhancement of coke strength, being associated with pore wall material rather than with a change in porosity. The results agree with previous work using cokes prepared in the laboratory on a small scale.  相似文献   

6.
Studies on the influence of an additive derived from coal on the coking properties of lower-rank coals and on the structure of cokes obtained from blends have been undertaken in our laboratory since 1978. The two coal extracts from flame coal (Int. Class. 900) and gas-coking coal (Int. Class. 632) were used as additives. The results indicate that the blends prepared from low-rank coals — flame coal (Int. Class. 900), gas-flame coal (Int. Class. 721) and the extracts possess better coking properties in comparison to the parent coals. The optical texture and the degree of structure ordering of the cokes obtained from blends is related to the amount of extract in the blend. With increasing extract content in the blend, increases were observed in the amount of optically anisotropic areas in cokes from low-rank coal/extract blends and the crystallite height (Lc) of cokes from the blends. The isotropic optical texture of cokes from low-rank coals can be modified by coal extracts to an anisotropic optical texture. The non-fusible coal is the most difficult to modify. An explanation of the observed phenomena is given.  相似文献   

7.
Isao Mochida  Harry Marsh 《Fuel》1979,58(11):790-796
Coals (NCB rank 102 to 902) were co-carbonized with solvent-refined coals and coal extracts, mixing ratio of 7:3, to 873 K, heating at 10 K min?1 with a soak period of 1 h. Resultant cokes were examined in polished section using reflected polarized-light microscopy and optical textures were recorded photographically. These optical textures were compared to assess the ability of the additive pitch to modify both the size and extent of optical texture of resultant cokes. The objective of the study is to provide a fundamental understanding of the use of pitch materials in co-carbonizations of lower-rank coals to make metallurgical coke. A Gulf SRC was able to modify the optical texture of cokes from all coals except the anthracite. Soluble fractions of this Gulf SRC were less effective than the parent SRC. A coal extract (NCB D112) modified coke optical texture, the extent being enhanced as the rank of coal being extracted was increased. Hydrogenation of the coal extract increased the penetration of the pitch into the coal particles but simultaneously reduced the size of the optical texture relative to the non-hydrogenated pitch. This indicates a positive interaction of pitch with coal in the co-carbonization process. The optical texture of the cokes from the hydrogenated coal extract in single carbonizations was larger than that from the non-hydrogenated material. Mechanisms explaining these effects are briefly described.  相似文献   

8.
A range of bituminous coals has been carbonized to 1273 K. Polished surfaces of the solid products, carbons or cokes, are examined for optical texture by optical microscopy. Fracture surfaces of the carbons are examined by scanning electron microscopy (SEM). The carbon from the lowest rank coal (NCB Code No. 702) is isotropic and fracture surfaces are featureless. Carbons from coals of ranks 602, 502 are optically isotropic but fracture surfaces are granular (size 0.1–0.2 μm), indicating small growth units of mesophase. In the carbon/coke from a 401 coal, the anisotropic optical texture and grain size are both ≈0.5–10 μm diameter. Coke from a coking coal (301a, 301b) has a layered structure extending in units of at least 20 μm diameter with sub-structures ~ 1.5 μm within the layers, indicating perhaps that the bedding anisotropy of these coals is not totally lost in the fluid phase of carbonization. The carbons from the higher rank coals have the bedding anisotropy of the parent coal. The combined techniques of optical microscopy and SEM (both before and after etching of the fracture surfaces of coke in chromic acid solution) reveal useful detail of structure in carbons/cokes and of the mechanism of carbonization of coking coals.  相似文献   

9.
Zhanfen Qian  Harry Marsh 《Fuel》1984,63(11):1588-1593
Coals of rank (NCB) 701, 401 and 204 were oxidized in air at 371 K for up to 15 days. The changes in optical texture of cokes from these coals were monitored by optical microscopy and point counting. The oxidized coals were cocarbonized to 1273 K with up to 30% of A240 petroleum pitch, a hydrogenated coal extract and decacyclene, and the resultant cokes were reassessed. The increase in isotropy in cokes caused by the oxidation treatment was never completely removed by use of the additives, but significant improvements existed for the less extensively oxidized coals. The possibility exists of using co-carbonization of oxidized coals with additives in coke making. Additives with good hydrogen donor ability, as with the coal extract, appear to be the most suitable.  相似文献   

10.
The purpose of this work was to characterize in detail the optical anisotropy formed during carbonization of the range of coals used in the coking industry, the ultimate objective being to attain a better understanding of the coking process. Vitrains hand-picked from a series of coking and caking coals were carbonized to various temperatures between 380 and 1000 °C. The semicokes and cokes so produced were examined by polarized-light microscopy to determine the proportions of the different types of optical anisotropy developed during carbonization. The results demonstrated that coals normally grouped within one class of the coal classification system used by the National Coal Board can lead to cokes which are significantly different in terms of their optical anisotropy. The process of the anisotropic development during carbonization can be explained generally in terms of loss of volatile matter, variations in viscosity of the plastic mass, and distortion of ordered phases by the pressure of evolving gases. Differences in carbonization behaviour as judged by the coke anisotropy can be attributed to differences in the ‘molecular-structure’ of the parent coal. In this respect the oxygen in the coal is considered to be of primary significance.  相似文献   

11.
Solvent extractions of two different types of Chinese rich coals i.e. Aiweiergou coal (AG) and Zaozhuang coal (ZZ) using the mixed solvent of carbon disulfide/N-methyl-2-pyrrolidinone (CS2/NMP) with different mixing ratios were carried out and the caking indexes of the extracted residues were measured. It was found that the extracted residues from the two types of coals showed different changing tendencies of the caking indexes with the extraction yield. When the extraction yield attained about 50% for ZZ coal, the extracted residue had no caking property. However for AG coal, when the extraction yield reached the maximum of 63.5%, the corresponding extracted residue still had considerable caking property with the caking index of 25. This difference indicated the different associative structure of the two coals although they are of the same coalification. Hydro-thermal treatment of the two rich coals gave different extract fractionation distributions for the treated coals compared to those of raw coals respectively. The coking property evaluations of the two coals and their hydro-thermally treated ones were carried out in a crucible coking determination. The results showed that the hydro-thermal treatment could greatly improve the micro-strengths of the resulting coke from the two coals, and the improvement was more significant for the more aggregated AG coal. The reactivities of hydro-thermally treated AG coal blends were almost the same as those of raw coal blends. The higher coke reactivities of AG raw coal and its hydro-thermally treated ones than those of ZZ coal might be attributed to its special ash composition.  相似文献   

12.
Keiichiro Koba 《Fuel》1980,59(6):380-388
Using regression analyses between the properties of coals and the strengths of their cokes several significant correlations are derived, which are useful to evaluate coals in the making of metallurgical coke. Slight but significant modification was necessary for their application to coal blends. For example, plasticities of the coal blends required a different equation from that derived for the single coals. The region of high coke-strength in the diagram of volatile matter vs. total dilatation was expanded considerably towards coals of lower caking properties by blending of coals, suggesting that the blending may serve to increase the coking properties of component coals. The coke strength, especially after the gasification was found to increase with the increasing inert maceral content in the parent coals up to 30 wt %. The high level of strength was maintained even above 35 wt % of inert content.  相似文献   

13.
Ten coals were carbonized under various pressures (4 kPa, normal pressure and 10 MPa). Optical textures and physical structures of resultant cokes were monitored. The extent of optical anisotropy increased greatly with increasing carbonization pressure, such a trend being more pronounced with the lower-rank coals. Physical structure was also influenced by carbonization pressure. Gasification reactivities of the cokes with carbon dioxide and steam (1200 °C) were studied with respect to their optical anisotropy and physical structure. Gasification reactivities of optical textures were estimated using both the point-counting technique and regression analysis. The reactivities of cokes with the same optical texture produced from the same parent coal were similar. However, there were considerable differences when compared with cokes from different parent coals. Although the values estimated by regression analyses are consistent with those obtained by point-counting, except for the leaflet and inert textures, the physical locations of respective textures can be important in quantitative discussions of their reactivities.  相似文献   

14.
《Fuel》1986,65(2):300-301
Compactness factors of aromatic molecules in hydrogenated ethylene tar pitch were calculated as a parameter to relate to properties of mesophase of the carbonization system. Compactness factors, φ, derived from structural analyses of hydrogenated ethylene tar pitch were also related to the size and shape of optical textures of resultant cokes. Hydrogenated ethylene tar pitches having values of φ 〉 0.5 gave cokes with flow type anisotropy and relate to formation of peri-condensed structures. The spin-lattice relaxation times, T1, for the cokes derived from hydrogenated ethylene tar pitch, are related to their optical texture.  相似文献   

15.
《Fuel》2007,86(10-11):1396-1401
Three cokemaking bituminous coals were extracted by the CS2/NMP mixed solvents with different content of NMP, and the effect of the amount and the component of coal soluble constituents on the caking property of the extracted residues of coals were investigated in this study. The CS2/NMP mixed solvent (1:1 by volume) was found to give the maximal extraction yields for the three coals, and the fat coal gave the highest extraction yield of 78.6% (daf) corresponding to its highest caking index of 101. It was found that for coking coal, when the extraction yield got to the maximum of 25.3% in the 1:1 by volume of CS2/NMP mixed solvent, the residue extracted still had caking property with the caking index of 19. This means parts of the caking constituents of coal are un-extractible because of covalent bonding or strong associative cross-links. The soluble components extracted by the CS2/NMP mixed solvent and their effects on the caking indexes of the residues at a similar extraction yield quite differed depending on the NMP content in the mixed solvent. The coal solubles extracted by the CS2/NMP mixed solvent with NMP less than 50% contained less light constituents with less of oxygen groups. This may lead to the decrease in the caking indexes for the residues obtained at the similar extraction yields compared to those of the CS2/NMP mixed solvent with NMP more than 50%.  相似文献   

16.
通过对美国Buchanan矿和Windber矿以及俄罗斯K10三种瘦焦煤煤质对比分析,可知3种瘦焦煤普遍具有较强的结焦性,单独炼焦均可形成较好的焦炭组织,在保持焦炭强度基本稳定的情况下,可以替代一部分国内的焦煤。并简要介绍了沙钢焦化厂近年来配用该三种瘦焦煤的情况,使用这三种瘦焦煤,可以降低配合煤成本。  相似文献   

17.
Optical textures of ten typical cokes before and after gasification in CO2 were quantified by point counting under a polarized microscope to quantify the reactivities of each type of optical texture. Although absolute values of gasification rate for each texture varied considerably from coke to coke, their relative values were constant regardless of the origin of the cokes. The relative reactivities of flow, mosaic, isotropic and inert textures were 1,1.8,2.8 and 3.0, respectively. The relative reactivity of a single coke calculated from a knowledge of optical textures, was monotonicly correlated with the mean maximum reflectance (R?0) of the parent coal. This indicates that the high reactivity of coke from a high-rank coal (r?0 = 1.8%) is due to factors other than its optical texture. The crystallite height, Lc(002)' of the coke correlated with R?0 of the parent coal, although the values of Lc(002) varied only from 1.5 to 2.1 nm.  相似文献   

18.
The effects on the caking properties of coals of reaction between the coals and S8 and SO2, have been studied. Caking coals (Akabira, Shinyubari, Zollverein, Indian Ridge, and Big Ben) lose their caking properties when treated with S8 above 200 °C. For Shinyubari coal the crucible swelling number decreases from 812 to 2 with treatment temperature of 235°C in which 5% of S is incorporated into the coal. The decaking of coal is attributed to thio-ether cross-linkages. Caking coals also lose completely their caking property when reacted with SO2 at 170 °C. The decaking action of SO2 is attributed to oxidation of coal in which ether cross-linkages are formed.  相似文献   

19.
The effect of coal oxidation in air at 140 °C on the technological properties of cokes obtained at laboratory scale from two medium volatile bituminous coals has been studied. The proximate and ultimate analyses do not show important changes with coal oxidation time. However oxidation clearly has a strong effect on the plastic properties of the coals in view of the fact that the Gieseler fluidity eventually disappears. From this point variations in plastic properties can still be detected by FSI. Other changes, such as a shortening of the length of the saturated fragments of the aliphatic chains, a decrease in the aliphatic hydrogen content and an increase in the oxygen-containing groups are detected by PA-FTIR. It was also found that the main coke quality indices (mechanical strength and reactivity to CO2) of both coke series are impaired with coal oxidation. A close relationship between reactivity to CO2 and the micropore specific surface area of the cokes has been corroborated.  相似文献   

20.
Isao Mochida  Harry Marsh 《Fuel》1979,58(11):797-802
Coals of rank ranging from medium quality coking to non-caking, non-fusible, have been co-carbonized with Ashland petroleum pitches A170, A240 and A200 as well as pitches modified by heat-treatment with aluminium chloride using A170, and by reductive hydrogenation of the A200. The mixing ratio was 7:3, the final HTT was 873 K, heating at 10 K min?1 with a soak time of 1 h. The optical texture of the resultant cokes is assessed using polished surfaces and a polarized-light microscope using reflected light and a half-wave plate. The changes in optical texture are studied from the point of view of using coals of low rank in the making of metallurgical coke. The optical texture of resultant cokes is modified by co-carbonization and the mechanism involves a solution or solvolysis of the non-fusible coals followed by the formation of nematic liquid crystals and mesophase in the resultant plastic phase. The modified A170 pitch is more effective in modifying optical texture than the A170 because of an increase in molecular weight. The hydrogenated A200 is a very reactive additive probably because of an increased concentration of naphthenic hydrogen. The hydrogenated A200 can modify the optical texture of cokes from the organic inerts of coals and from oxidized, non-fusible coals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号