首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ralph J. Tyler 《Fuel》1980,59(4):218-226
The devolatilization behaviour of ten bituminous coals was investigated under rapid heating conditions using a small-scale fluidized-bed pyrolyser. The pyrolyser operated continuously, coal particles being injected at a rate of 1–3 g h?1 directly into a heated bed of sand fluidized by nitrogen. Yields of tar, C1–C3 hydrocarbon gases, and total volatile-matter and an agglomeration index are reported for all coals. Maximum tar yields were obtained at about 600 °C and were always substantially higher than those from the Gray-King assay. Total volatile-matter yields were also substantially higher than the proximate analysis values. The maximum tar yields appear to be directly proportional to the coal atomic HC ratio. The elemental analysis of the tar is strongly dependent on pyrolysis temperature. The tar atomic HC ratio is proportional to that of the parent coal. The effect on the devolatilization behaviour of two coals produced by changes in the pyrolyser atmosphere and the nature of the fluidized-bed material were also investigated. Substituting an atmosphere of hydrogen, helium, carbon dioxide or steam for nitrogen, has no effect on tar yield and, with one exception, little effect on the hydrocarbon gas yields. In the presence of hydrogen the yield of methane was increased at temperatures above 600 °C. Tar yields were significantly reduced on substituting petroleum coke for sand as the fluid-bed material. A fluidized bed of active char virtually eliminated the tar yield.  相似文献   

2.
Gas evolution kinetics of two coal samples during rapid pyrolysis   总被引:1,自引:0,他引:1  
Quantitative gas evolution kinetics of coal primary pyrolysis at high heating rates is critical for developing predictive coal pyrolysis models. This study aims to investigate the gaseous species evolution kinetics of a low rank coal and a subbituminous coal during pyrolysis at a heating rate of 1000 °C s− 1 and pressures up to 50 bar using a wire mesh reactor. The main gaseous species, including H2, CO, CO2, and light hydrocarbons CH4, C2H2, C2H4, C2H6, C3H6, C3H8, were quantified using high sensitivity gas chromatography. It was found that the yields of gaseous species increased with increasing pyrolysis temperature up to 1100 °C. The low rank coal generated more CO and CO2 than the subbituminous coal under similar pyrolysis conditions. Pyrolysis of the low rank coal at 50 bar produced more gas than at atmospheric pressure, especially CO2, indicating that the tar precursor had undergone thermal cracking during pyrolysis at the elevated pressure.  相似文献   

3.
Treatment of plastic waste by gasification in fluidized bed with air using dolomite as tar cracking catalyst has been studied. The gasifier has a 1 m high bed zone (diameter of 9.2 cm) followed by a 1 m high freeboard (diameter of 15.4 cm). The feedstock is composed of blends of plastic waste with pine wood sawdust and coal at flow rates of 1–4 kg/h. Operating variables studied were gasifier bed temperature (750–880 °C), equivalence ratio (0.30–0.46), feedstock composition and the influence of secondary air insertion in freeboard. Product distribution includes gas and char yields, gas composition (H2, CO, CO2, CH4, light hydrocarbons), heating value and tar content in the flue gas. As a result, a gas with a medium hydrogen content (up to 15% dry basis) and low tar content (less than 0.5 g/mn3) is obtained.  相似文献   

4.
The pyrolysis of tire powder was studied experimentally using a specially designed pyrolyzer with high heating rates. The composition and yield of the derived gases and distribution of the pyrolyzed product were determined at temperatures between 500 and 1000 °C under different gas phase residence times. It is found that the gas yield goes up while the char and tar yield decrease with increasing temperature. The gaseous product mainly consists of H2, CO, CO2, H2S and hydrocarbons such as CH4, C2H4, C2H6, C3H6, C3H8, C4H8 and C4H6 with a little other hydrocarbon gases. Its heating value is in the range of 20 to 37 MJ/Nm3. Maximum heating value is achieved at a temperature between 700 and 800 °C. The product distribution ratio of gas, tar and char is about 21:44:35 at 800 °C. The gas yield increases with increasing gas residence time when temperature of the residence zone is higher than 700 °C. The gas heating value shows the opposite trend when the temperature is higher than 800 °C. Calcined dolomite and limestone were used to explore their effect on pyrolyzed product distribution and composition of the gaseous product. It is found that both of them affect the product distribution, but the effect on tar cracking is not obvious when the temperature is lower than 900 °C. It is also found that H2S can be absorbed effectively by using either of them. About 57% sulfur is retained in the char and 6% in the gas phase. The results indicated that high-energy recovery could not be achieved if fuel gas is the only target product. In view of this, multi-use of the pyrolyzed product is highly recommended.  相似文献   

5.
The performances of 1 g h?1 and 20 kg h?1 flash pyrolysers are compared for three Australian coals: Loy Yang brown coal (Victoria), Liddell bituminous coal (New South Wales), and Millmerran sub-bituminous coal (Queensland). The two reactors gave comparable yields of tar, char and C1–C3 hydrocarbon gases over a range of operating conditions for each particular coal. The yield of total volatile matter from Millmerran coal was similar from both reactors, as were the compositions of chars from Loy Yang coal and tars from the Liddell and Millmerran coals. For Millmerran coal, the yields of tar, C1–C3 gases and volatiles from the large reactor below 650 °C, were slightly lower than for the small reactor, possibly owing to a shorter retention time of Millmerran coal particles in the large-scale reactor. At a temperature near 600 °C tar yields were independent of tar concentration in the effluent gas, over a range 0.0025–0.1 kg m?3 for Liddell coal, 0.005–0.26 kg m?3 for Millmerran coal and 0.0045–0.09 kg m?3 for Loy Yang coal. The tar yields from Millmerran and Liddell coals at 600 °C in the large reactor, correlate directly with the atomic HC ratio of the parent coal, in the same manner as that found for a wider range of bituminous coals in the small-scale reactor.  相似文献   

6.
Ramin Radmanesh  Christophe Guy 《Fuel》2006,85(9):1211-1220
Thermogravimetry analysis and gas chromatography techniques are used at different heating rates (from 5 to 50 K/min) to map all the products and to develop suitable kinetic models of biomass pyrolysis. A three-independent-parallel-reactions model is used to model kinetic of total devolatilization. This part accounts for the total char yield and devolatilization time. The evolutions of condensable vapors (tar and H2O) and non-condensable gases (H2, CH4, CO and CO2) are also studied using gas chromatography technique. It is shown that the final total yield of gases increases by increasing the heating rate, whereas those of tar decrease by increasing heating rate. A kinetic model was then proposed and the parameters for that were calculated, which can predict the change of the gases yields at different heating rates. The performance of the kinetic models was evaluated for other experimental works available in the literature or by exposing the biomass to different heating program.  相似文献   

7.
The effects of minerals on product compositions from rapid pyrolysis of a Pittsburgh Seam bituminous coal were investigated. Whole, demineralized, and mineral treated samples of pulverized coal were heated in 100 KPa helium or 6.9 MPa hydrogen at 1000 K s?1 to temperatures of up to 1300 K. Yields of char, tar and individual gaseous products were determined as a function of time-temperature conditions. Clays, iron-sulphur minerals, and quartz had few effects on pyrolysis in helium. Calcium minerals decreased yields of hydrocarbon products and increased yields of CO in helium pyrolysis. Calcite and clays decreased yields of CH4 from hydropyrolysis, whereas iron-sulphur minerals had little effect on pyrolysis at 6.9 MPa H2. Whole coal results were similar to demineralized coal results under all conditions.  相似文献   

8.
A range of Canadian coals were subjected to variable heating-rate conditions in a variety of atmospheres. Heating rate was found to have little effect on total weight loss of the coal, but a dramatic effect on the actual composition of products. High heating rates substantially increased the yield of light hydrocarbons. Operation in ≈100 KPa (1 atm) H2 at high heating rate resulted in 5% conversion to light hydrocarbon gas and liquid products. Operation in ≈10 MPa (100 atm) H2 at a heating rate of 600 Ks?1 gave 10% coal conversion to light liquid products (benzene, xylene, toluene).  相似文献   

9.
煤快速热解固相和气相产物生成规律   总被引:4,自引:2,他引:4       下载免费PDF全文
利用能有效避免二次转化反应的高频炉热解装置对3种不同变质程度的煤进行了600~1200℃条件下的快速热解,考察了在煤热解最初阶段焦产率、焦-C产率、热解气产率、热解气4种主要组分H2、CO、CH4和CO2的比例以及热解气热值随煤阶和热解温度的变化规律。结果表明,焦的产率和焦-C的产率均随煤阶的升高而升高,热解气的产率随煤阶的升高而降低;热解温度的提高能显著降低煤焦和焦-C的产率并提高热解气的产率。热解气组分以H2相似文献   

10.
The influence of cations on the pyrolysis behaviour of brown coals under flash heating conditions was investigated by means of a small fluidized-bed pyrolyser. A stream of coal particles in nitrogen was injected at rates of 1–3 g coal/h directly into a heated bed of sand fluidized by nitrogen. Yields of tar, C1–C3 hydrocarbons and total volatile matter from four Gelliondale brown coals and a Montana lignite were determined as a function of pyrolysis temperature. With all coals the maximum tar yield was obtained at 600 °C. Removal of cations present in the coals markedly increased the yields of tar and total volatile matter, with little effect on the yields of hydrocarbon gases. The converse was also observed in that the addition of Ca2+ to a cation-free coal decreased the yields of tar and total volatile matter. The extent of the reduction in tar yield at 600 °C in the presence of cations was found to be similar for all coals. After acid washing, tar yields appear to correlate with the atomic HC ratios of the coals in a manner similar to that observed previously with bituminous coals.  相似文献   

11.
A wire mesh reactor was used to investigate the devolatilization process of coal particle during entrained flow gasification. Coal from Indonesia East Kalimantan mine, which has high moisture and high volatile matter, was chosen as a sample. Experiments were carried out at the heating rate of 1,000 °C/s and isothermal condition was kept at peak temperature under atmospheric pressure. The char, tar and gas formation characteristics of the coal as well as the composition of the gas components at peak temperatures were determined. The experimental results showed that devolatilization process terminated when temperature reached above 1,100 °C. Most of tar was formed at about 800 °C, while the rate of tar formation decreased gradually as the temperature increased. CH4 was observed at temperatures above 600 °C, whereas H2 was detected above 1,000 °C. The amount of formed gases such as H2, CO, CH4 and C n H m increased as the temperature increased. From the characteristics of devolatilization with residence time, it was concluded that devolatilization terminated within about 0.7 second when the temperature reached 1,000 °C. As the operating temperature in an entrained flow gasifier is higher than ash melting temperature, it is expected that the devolatilization time of high volatile coal should be less than one second in an entrained flow gasifier.  相似文献   

12.
Steam gasification of biomass can generate hydrogen-rich, medium heating value gas. We investigated pyrolysis and char reaction behavior during biomass gasification in detail to clarify the effect of steam presence. Rice straw was gasified in a laboratory scale, batch-type gasification reactor. Time-series data for the yields and compositions of gas, tar and char were examined under inert and steam atmosphere at the temperature range of 873-1173 K. Obtained experimental results were categorized into those of pyrolysis stage and char reaction stage. At the pyrolysis stage, low H2, CO and aromatic tar yields were observed under steam atmosphere while total tar yield increased by steam. This result can be interpreted as the dominant, but incomplete steam reforming reactions of primary tar under steam atmosphere. During the char reaction stage, only H2 and CO2 were detected, which were originated from carbonization of char and char gasification with steam (C + H2O→CO + H2). It implies the catalytic effect of char on the water-gas shift reaction. Acceleration of char carbonization by steam was implied by faster hydrogen loss from solid residue.  相似文献   

13.
Good agreement has been obtained between measured proximate analysis values for fixed carbon (FC) and the predictions of a thermal decomposition model. The model provides a basis for understanding the relation between FC and coal structure and between FC measured under proximate analysis conditions and coke or char measured in other thermal decomposition experiments. The key parameters in the model are the aromatic carbon concentration (Car) and the tar yield. Car has been determined for 43 coals using quantitative infrared analysis. The aliphatic hydrogen concentration is measured from the absorption near 2900 cm?1 and the aliphatic carbon concentration is computed assuming a stoichiometry of CH1.8 Car is then computed by difference. The results verify the good correlation between Car and FC discussed by van Krevelen. To explain this correlation, use has been made of a coal thermal decomposition model which has been successful in simulating the quantity and composition of volatile components yielded under vacuum pyrolysis conditions. To apply the model to proximate analysis, it was necessary to estimate the tar yields obtained with thick beds and the amounts of O, N, H, and S which remain with the FC. The tar yields for proximate analysis conditions have been estimated to be 13 to 14 the yields for thin beds in vacuum. To determine the composition of the FC, measurements were made on a lignite and a bituminous char produced in a thin bed heated by a wire grid for the time (7 min) and temperature (950 °C) used in the proximate analysis, and on the FC residues from a proximate analysis volatile matter determination. Both residues give similar results, showing that approximately 10% of the ‘fixed carbon’ is not carbon. Values of FC computed with the model adjusted for the above conditions are in good agreement with the measured values.  相似文献   

14.
C.G. Soni  A.K. Dalai  T. Pugsley 《Fuel》2009,88(5):920-925
Gasification of meat and bone meal followed by thermal cracking of tar was carried out at atmospheric pressure using a two-stage fixed bed reaction system in series. The first stage was used for the gasification and the second stage was used for thermal cracking of tar. In this work, the effects of temperature (650-850 °C) of both stages, equivalence ratio (actual O2 supply/stoichiometric O2 required for complete combustion) (0.15-0.3) and the second stage packed bed height (40-100 mm) on the product (char, tar and gas) yield and gas (H2, CO, CO2, CH4, C2H4, C2H6, C3H6, C3H8) composition were studied. It was observed that the two-stage process increased hydrogen production from 7.3 to 22.3 vol.% (N2 free basis) and gas yield from 30.8 to 54.6 wt.% compared to single stage. Temperature and equivalence ratio had significant effects on the hydrogen production and product distribution. It was observed that higher gasification (850 °C) and cracking (850 °C) reaction temperatures were favorable for higher gas yield of 52.2 wt.% at packed bed height of 60 mm and equivalence ratio of 0.2. The residence time of tar and product gases was varied by varying the packed bed height of second stage. The tar yield decreased from 18.6 wt.% to 14.2 wt.% and that of gas increased from 50.6 wt.% to 54.6 wt.% by changing the packed bed height of second stage from 40 to 100 mm while the gross heating value (GHV) of the product gas remained almost constant (16.2-16.5 MJ/m3).  相似文献   

15.
A new process to integrate coal pyrolysis with CO2 reforming of methane over Ni/MgO catalyst was put forward for improving tar yield. And several Chinese coals were used to confirm the validity of the process. The experiments were performed in an atmospheric fixed-bed reactor containing upper catalyst layer and lower coal layer to investigate the effect of pyrolysis temperature, coal properties, Ni loading and reduction temperature of Ni/MgO catalysts on tar, water and char yields and CH4 conversion at fixed conditions of 400 ml/min CH4 flow rate, 1:1 CH4/CO2 ratio, 30 min holding time. The results indicated that higher tar yield can be obtained in the pyrolysis of all four coals investigated when coal pyrolysis was integrated with CO2 reforming of methane. For PS coal, the tar, water and char yield is 33.5, 25.8 and 69.5 wt.%, respectively and the CH4 conversion is 16.8%, at the pyrolysis temperature of 750 °C over 10 wt.% Ni/MgO catalyst reduced at 850 °C. The tar yield is 1.6 and 1.8 times as that in coal pyrolysis under H2 and N2, respectively.  相似文献   

16.
The pyrolysis of wood was carried out in an Entrained Flow Reactor at high temperature (650 to 950 °C) and under rapid heating conditions (> 103 K s− 1). The influence of the diameter and initial moisture of the particle, reactor temperature, residence time and the nature of the gaseous atmosphere on the composition of the gaseous products has been characterised. Particle size, between 80-125 and 160-200 μm, did not show any impact. Pyrolysis and tar cracking essentially happen in very short time period: less than 0.6 s; the products yields are only slightly modified after 0.6 s in the short residence times (several seconds) of our experiments. Higher temperatures improve hydrogen yield in the gaseous product while CO yield decreases. Under nitrogen atmosphere, after 2 s at 950 °C, 76% (daf) of the mass of wood is recovered as gases: CO, CO2, H2, CH4, C2H2, C2H4 and H2O. Tests performed under steam partial pressure showed that hydrogen production is slightly enhanced.  相似文献   

17.
The devolatilisation behaviour of Yallourn brown coal was investigated under rapid heating conditions using two different flash pyrolysers: a fluid-bed reactor giving coal particle heating rates of 104 °Cs?1 with a gas residence time of about 0.5 s and a shock tube which generated heating rates of the order of 107 °Cs?1 and a 1 ms reaction time. Yields of products are reported covering pyrolysis temperatures in the range 400–2300 °C. Hydrocarbon gas yields reached maximum values which were remarkably similar for both reactors although occurring at different temperatures. Carbon oxide production was also similar for both reactors with CO yields reaching 30% wt/wt daf coal. These high yields of CO are very different from those reported for slow heating conditions. It appears that on flash heating, coal decomposition pathways change in a manner which increases CO yields at the expense of H20 and to a lesser extent C02, resulting in the volatilisation of additional carbon from the coal.  相似文献   

18.
Ralph J. Tyler 《Fuel》1979,58(9):680-686
The devolatilization behaviour of finely-ground (< 0.2 mm) Loy Yang brown coal was investigated under rapid heating conditions using a small-scale fluidized-bed pyrolyser. The pyrolyser operated continuously, coal being fed at rates of 1–3 g/h directly into a bed of sand fluidized by nitrogen. Particle heating rates probably exceeded 104 °C/s. The yields of tar, C1-C3 hydrocarbons and total volatile matter are reported for a pyrolyser-temperature range of 435 to 900 °C. A maximum tar yield of 23% w/w (dry ash-free coal), 60% more than the Fischer assay, was obtained at 580 °C. Yields of C1-C3 hydrocarbons increased with increasing temperature, reaching 8% at 900 °C. Elemental analyses showed that the composition of the tar and char products was strongly dependent on pyrolysis temperature. The effects on the devolatilization behaviour of the coal produced by the moisture associated with the coal, by hydrogen, and by the replacement of the sand by a fluidized bed of petroleum coke were investigated.  相似文献   

19.
《Fuel》1987,66(5):697-701
Effects of carbonization conditions on char reactivity in steam gasification were evaluated by a gravimetric method, using 12 coals varying widely in rank, type and source. The carbonization variables examined were
  • 1.(1) heating rate (5–420K min−1) in steam atmosphere;
  • 2.(2) gaseous atmosphere (N2,H2,H2O andCO2);
  • 3.(3) incomplete devolatilization in N2 (final temperature 200–800 °C);
  • 4.(4) quenching of incompletely devolatilized char; and
  • 5.(5) complete carbonization (900–1400 °C).
The char reactivity to steam depended on the kind of coal but was almost independent of the carbonization conditions of heating rate, gaseous atmosphere and quenching at temperatures below ≈ 1000 °C. Carbonization above 1100 °C reduced the char reactivity, for example by a factor of 7 to 10 at 1300 °C compared with 900–1000 °C, depending on the parent coal. The char deactivation brought about by increasing carbonization temperature could be correlated with a decrease in the micropore volume of the char, unless graphitization was significant.  相似文献   

20.
The yields of gaseous products (H2, CO, CO2, and C n H2n + 2 at n = 1−4) from brown coal and brown coal-KOH compounds were determined under conditions of nonisothermal heating (4°C/min) to 800°C followed by an isothermal exposure (1 h, 800°C). It was found that, in the presence of the alkali, the yields of H2, CO, C2H6, and C3H8 increased; the yields of CO2 and CH4 decreased; and the formation of isobutane was completely suppressed. Changes in the gas compositions were explained by the alkali degradation of C-C bonds in the organic matter of coal and by the thermally initiated dehydrogenation and dealkylation reactions of arene and alkane structural fragments, in which KOH molecules served as H-atom donors in the formation of H2 and alkanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号