首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A time-domain boundary element method (TDBEM) for transient dynamic analysis of two-dimensional (2D), homogeneous, anisotropic and linear piezoelectric cracked solids is presented in this paper. The present analysis uses a combination of the strongly singular displacement boundary integral equations (BIEs) and the hypersingular traction boundary integral equations. The spatial discretization is performed by a Galerkin-method, while a collocation method is implemented for the temporal discretization. Both temporal and spatial integrations are carried out analytically. In this way, only the line integrals over a unit circle arising in the time-domain fundamental solutions are computed numerically by standard Gaussian quadrature. An explicit time-stepping scheme is developed to compute the unknown boundary data including the generalized crack-opening-displacements (CODs) numerically. Special crack-tip elements are adopted to ensure a direct and an accurate computation of the dynamic field intensity factors (IFs) from the CODs. Several numerical examples involving stationary cracks in both infinite and finite solids under impact loading are presented to show the accuracy and the efficiency of the developed hypersingular time-domain BEM.  相似文献   

2.
A two-dimensional (2D) time-domain boundary element method (BEM) is presented in this paper for transient analysis of elastic wave scattering by a crack in homogeneous, anisotropic and linearly elastic solids. A traction boundary integral equation formulation is applied to solve the arising initial-boundary value problem. A numerical solution procedure is developed to solve the time-domain boundary integral equations. A collocation method is used for the temporal discretization, while a Galerkin-method is adopted for the spatial discretization of the boundary integral equations. Since the hypersingular boundary integral equations are first regularized to weakly singular ones, no special integration technique is needed in the present method. Special attention of the analysis is devoted to the computation of the scattered wave fields. Numerical examples are given to show the accuracy and the reliability of the present time-domain BEM. The effects of the material anisotropy on the transient wave scattering characteristics are investigated.  相似文献   

3.
A hypersingular time‐domain boundary element method (BEM) for transient elastodynamic crack analysis in two‐dimensional (2D), homogeneous, anisotropic, and linear elastic solids is presented in this paper. Stationary cracks in both infinite and finite anisotropic solids under impact loading are investigated. On the external boundary of the cracked solid the classical displacement boundary integral equations (BIEs) are used, while the hypersingular traction BIEs are applied to the crack‐faces. The temporal discretization is performed by a collocation method, while a Galerkin method is implemented for the spatial discretization. Both temporal and spatial integrations are carried out analytically. Special analytical techniques are developed to directly compute strongly singular and hypersingular integrals. Only the line integrals over an unit circle arising in the elastodynamic fundamental solutions need to be computed numerically by standard Gaussian quadrature. An explicit time‐stepping scheme is obtained to compute the unknown boundary data including the crack‐opening‐displacements (CODs). Special crack‐tip elements are adopted to ensure a direct and an accurate computation of the elastodynamic stress intensity factors from the CODs. Several numerical examples are given to show the accuracy and the efficiency of the present hypersingular time‐domain BEM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a time-domain boundary element method (BEM) for transient elastodynamic crack analysis in homogeneous and linear elastic solids of general anisotropy. A finite crack subjected to a transient loading is investigated. Two-dimensional (2D) generalized plane-strain or plane-stress condition is considered. The initial-boundary value problem is described by a set of hypersingular time-dependent traction boundary integral equations (BIEs), in which the crack-opening displacements (CODs) are unknown quantities. The hypersingular time-domain BIEs are first regularized to weakly singular ones by using spatial Galerkin method, which transfers the derivatives of the fundamental solutions to the unknown CODs and the weight functions. To solve the time-domain BIEs numerically, a time-stepping scheme is developed. The scheme applies the collocation method for temporal discretization of the time-domain BIEs. As spatial shape-functions, two different functions are implemented. For elements away from crack-tips, linear spatial shape-function is used, while for elements near the crack-tips a special ‘crack-tip shape-function’ is applied to describe the local ‘square-root’ behavior of the CODs at the crack-tips properly. Special attention of the analysis is devoted to the numerical computation of the transient elastodynamic stress intensity factors for cracks in general anisotropic and linear elastic solids. Numerical examples are presented to verify the accuracy of the present time-domain BEM.  相似文献   

5.
In the present work, a Boundary Element Method implementation is presented for a specific non-homogeneous elastic media. The media under consideration is a Poisson solid (ν=0.25), which requires additionally a quadratic variation for the material parameters along one cartesian axis (e.g. depth). The 3D problem for the time-harmonic case was implemented and numerically validated for specific problems. Moreover, the static version of the present problem was used to model a real functionally graded composite of alumina–nickel.  相似文献   

6.
This paper presents a single-domain boundary element method (BEM) analysis of fracture mechanics in 2D anisotropic piezoelectric solids. In this analysis, the extended displacement (elastic displacement and electrical potential) and extended traction (elastic traction and electrical displacement) integral equations are collocated on the outside boundary (no-crack boundary) of the problem and on one side of the crack surface, respectively. The Green's functions for the anisotropic piezoelectric solids in an infinite plane, a half plane, and two joined dissimilar half-planes are also derived using the complex variable function method. The extrapolation of the extended relative crack displacement is employed to calculate the extended `stress intensity factors' (SIFs), i.e., KI, KII, KIII and KIV. For a finite crack in an infinite anisotropic piezoelectric solid, the extended SIFs obtained with the current numerical formulation were found to be very close to the exact solutions. For a central and inclined crack in a finite and anisotropic piezoelectric solid, we found that both the coupled and uncoupled (i.e., the piezoelectric coefficient eijk=0) cases predict very similar stress intensity factors KI and KII when a uniform tension σyy is applied, and very similar electric displacement intensity factor KIV when a uniform electrical displacement Dy is applied. However, the relative crack displacement and electrical potential along the crack surface are quite different for the coupled and uncoupled cases. Furthermore, for a inclined crack within a finite domain, we found that while a uniform σyy (=1 N m−2) induces only a very small electrical displacement intensity factor (in the unit of Cm−3/2), a uniform Dy (=1 C m−2) can produce very large stress intensity factors (in the unit of Nm−3/2).  相似文献   

7.
Three different boundary element methods (BEM) for transient dynamic crack analysis in two-dimensional (2-D), homogeneous, anisotropic and linear elastic solids are presented. Hypersingular traction boundary integral equations (BIEs) in frequency- domain, Laplace-domain and time-domain with the corresponding elastodynamic fundamental solutions are applied for this purpose. In the frequency-domain and the Laplace-domain BEM, numerical solutions are first obtained in the transformed domain for discrete frequency or Laplace-transform parameters. Time-dependent results are subsequently obtained by means of the inverse Fourier-transform and the inverse Laplace-transform algorithm of Stehfest. In the time-domain BEM, the quadrature formula of Lubich is adopted to approximate the arising convolution integrals in the time-domain BIEs. Hypersingular integrals involved in the traction BIEs are computed through a regularization process that converts the hypersingular integrals to regular integrals, which can be computed numerically, and singular integrals which can be integrated analytically. Numerical results for the dynamic stress intensity factors are presented and discussed for a finite crack in an infinite domain subjected to an impact crack-face loading.  相似文献   

8.
A 3-D Dual BEM formulation for the analysis of crack growth   总被引:3,自引:1,他引:2  
In this paper, a DBEM formulation for the analysis of crack growth in three dimensions is demonstrated. The technique allows the use of continuous elements in the discretization of the crack surfaces. The method involves defining a new interpolation function for continuous elements which incorporate certain continuity conditions arising from the hypersingular nature of the integrals involved. The crack growth direction is determined using the minimum strain energy criterion and the crack extension is calculated via the Paris equation. Results from the growth of embedded and edge crack examples are shown to validate the technique.  相似文献   

9.
A boundary element method (BEM) approach for the solution of the elastic problem with geometrical non-linearities is proposed. The geometrical non-linearities that are considered are both finite strains and large displacements. Material non-linearities are not considered in this paper, so the constitutive law employed is Hooke's elastic one and the fundamental solution introduced in the integral equations is the usual one for isotropic linear elasticity. In order to deal with the intricate non-linear equations that govern the problem, an incremental–iterative method is proposed. The equations are linearized and a Total Lagrangian Formulation is adopted. The integral equations of the BEM are developed in an incremental form. The iterative process is necessary in order to achieve a good approximation to the governing equations. The problem of a slab under homogeneous deformation is solved and the results obtained agree with the analytical solution. The problem of a hollow cylinder under internal pressure is also solved and its solution compared with that obtained by a standardized finite element method code.  相似文献   

10.
A three dimensional (3D) boundary element method (BEM) for treating time harmonic problems in linear elastic structures exhibiting microstructure effects is presented. These microstructural effects are taken into account with the aid of the dipolar gradient elastic theory, which is the simplest dynamic version of Mindlins generalized elastic theory. A variational statement is established to determine all possible classical and non-classical (due to gradient terms) boundary conditions of the general boundary value problem. The dipolar gradient frequency domain elastodynamic fundamental solution is explicitly derived and used to construct the boundary integral representation of the solution with the aid of a reciprocal integral identity. In addition to a boundary integral representation for the displacement, a boundary integral representation for its normal derivative is also necessary for the complete formulation of a well posed problem. Surface quadratic quadrilateral boundary elements are employed and the discretization is restricted only to the boundary. The solution procedure is described in detail. A numerical example serves to illustrate the method and demonstrate its accuracy  相似文献   

11.
The numerical implementation of the Direct Boundary Element formulation for time-domain transient analysis of three-dimensional solids is presented in a most general and complete manner. The present formulation employs the space and time dependent fundamental solution (Stokes' solution) and Graffi's dynamic reciprocal theorem to derive the boundary integral equations in the time domain. A time-stepping scheme is then used to solve the boundary initial value problem by marching forward in time. Higher order shape functions are used to approximate the field quantities in space as well as in time, and a combination of analytical (time-integration) and numerical (spatial-integration) integration is carried out to form a system of linear equations. At the end of each time step, these equations are solved to obtain the unknown field quantities at that time. Finally, the accuracy and reliability of this algorithm is demonstrated by solving a number of example problems and comparing the results against the available analytical and numerical solution.  相似文献   

12.
The frequency-domain fast boundary element method (BEM) combined with the exponential window technique leads to an efficient yet simple method for elastodynamic analysis. In this paper, the efficiency of this method is further enhanced by three strategies. Firstly, we propose to use exponential window with large damping parameter to improve the conditioning of the BEM matrices. Secondly, the frequency domain windowing technique is introduced to alleviate the severe Gibbs oscillations in time-domain responses caused by large damping parameters. Thirdly, a solution extrapolation scheme is applied to obtain better initial guesses for solving the sequential linear systems in the frequency domain. Numerical results of three typical examples with the problem size up to 0.7 million unknowns clearly show that the first and third strategies can significantly reduce the computational time. The second strategy can effectively eliminate the Gibbs oscillations and result in accurate time-domain responses.  相似文献   

13.
This paper is concerned with the dynamic energy release rate for a sharp, straight crack in a micropolar elastic body.  相似文献   

14.
Abstact The simulation of 3D fatigue crack growth is investigated and in combination with suitable experiments it is aimed to identify a reliable crack growth criterion. To perform the crack growth simulation as effectively as possible the boundary element method (BEM) in terms of the 3D Dual BEM is utilized. The relevant boundary integral equations are evaluated in the framework of a collocation procedure. To compress the system matrix and to speed-up the solution procedure the adaptive cross approximation (ACA) method is applied. It is an algebraic technique acting purely on the system matrix itself. The efficiency of this procedure with respect to crack problems will be shown on both a standard fracture specimen and an industrial application.  相似文献   

15.
This paper gives an energy analysis of an elastic solid with a crack which penetrates an elastic inclusion. The purpose of our work is to evaluate the energy release rates (ERR) associated with crack tip extension while the inclusion is stationary, and to evaluate the ERR due to inclusion translation, rotation and expansion with respect to the crack tip. Reduction and increase in the crack ERR caused by an inclusion (shielding and amplification effects of the inclusion) are expressed in terms of the inclusion elastic properties normalized by Young's modulus of the bulk material. The variation in ERR as a crack approaches and passes through a circular inclusion is also examined.  相似文献   

16.
This paper presents a procedure for coupling general finite element models with three‐dimensional bodies modelled by the Boundary Element Method (BEM). Shells, plates and frames are modelled by the Finite Element Method (FEM) and coupled to the BEM domain directly or by means of rigid blocks. The coupling is used for the analysis of buildings connected to half‐space by means of rigid footings, piles or plates in bending and other problems where combinations of different types of sub‐domains are required, composite domains for instance. Several numerical examples are analysed to demonstrate the robustness and accuracy of the proposed scheme. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
A solution to the 3D stress field based on the maximum tangential stress (MTS) criterion is presented in this paper. The solution allows for the estimation of the critical crack plane, the direction of growth in terms of both twist and tilt angles and the equivalent crack driving force for a given mixed-mode loading condition. It also shows the graphical relationship between the three different stress intensities for a given driving force. Initial results have shown good correlation with experimental data obtained from literature.  相似文献   

18.
Periodically distributed opening mode fractures are often found in layered sedimentary rocks. The stress analysis related to opening mode fractures in layered solids is solved by a new numerical approach combining (3D) fast Fourier transform with the theory of periodic eigenstrain and the conjugate gradient method. Results show that the fracture spacing to layer thickness ratio for embedded opening mode fractures, using a three-dimensional (3D) model, is in good comparison with that of the plane strain case (two-dimensional model). The critical value of the fracture spacing to layer thickness ratio increases for a stiff layer case and decreases for a stiff surrounding solid case. Out-of-plane fracture length is also studied as a parameter in the 3D modeling. Opening mode surface fractures in a layered half-space were also studied. The results show that a critical fracture saturation ratio exists for this case and occurs when the normal surface stress transitions from tensile to compressive. This stress state is shown to be caused by a bending effect in the layer.  相似文献   

19.
A boundary element approach for wave propagation problems in transversely isotropic solids is developed in this paper. The procedure is based on the well‐known formulation for time‐harmonic elasticity and a new version of a recently obtained fundamental solution for transversely isotropic media. The fundamental solution is transformed to obtain new expressions which can be efficiently evaluated at any point. This fact allows for a drastic reduction of the computation time and makes possible the implementation of a general purpose three‐dimensional quadratic element code. To show the simplicity and accuracy of the approach, the diffraction of waves by a spherical cavity and the interaction between two cavities in a boundless domain are studied. The computed results show a very good agreement with the analytical solution in the simple case where such solution exists. Other geometries can be studied without difficulty. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
A simple numerical method is presented for analysing the mixed mode of rectilinear anisotropic solids. The method is formulated on the basis of a finite element and the crack closure integral approach in conjunction with fundamental relationships in fracture mechanics. A simple and efficient solution procedure is developed involving only the known auxiliary solution for evaluating the strain energy release rate. The finite element solution converges to an accurate solution for small crack extensions. Numerical examples are presented to demonstrate the accuracy of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号