首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on the role of the water content on the effective thermal conductivity of porous ceramics placed in different conditions of relative humidity. Fully stabilized zirconia samples with variation in the capacity to take up water were prepared by varying the temperature of the thermal treatment. The pore volume fraction of the dried samples decreases from 56% down to 30%. Thermal conductivity measurements were made on samples placed in a chamber where the relative humidity was fixed between 3% and 99%. For all samples, the experimental values of the effective thermal conductivity increase significantly with the water content. Experimental results agree closely to analytical predictions based on the upper limit of the Hashin and Shtrikman expressions for calculating the thermal conductivity of the pores (constituted by air and water) and Landauer's effective medium expression for calculating the effective thermal conductivity of the material.  相似文献   

2.
《Ceramics International》2016,42(10):11674-11681
High porous yttria stabilized zirconia with unidirectionally aligned channels is used in engineering applications with extremely low thermal conductivity. This property is strongly influenced by microstructure features such as pore volume fraction, pore size distribution, random porous microstructure and pore morphology directionality. Although several models are reported in the available literature, but their analytical formulas are formalised for homogeneous structures or they are based on proportion between solid and fluid phases. These differences from real microstructures cause significant computational errors especially when thermal conductivity changes as the function of the measurement direction (parallel or perpendicular). In this context, the application of an intermingled fractal unit's procedure capable of reproducing porous microstructure as well as predicting thermal conductivity has been proposed. The results are in agreement with experimental ones measured for parallel and perpendicular directions and suggest improving the formalisation of fractal modelling in order to obtain an instrument of microstructure design.  相似文献   

3.
《Ceramics International》2017,43(12):9184-9190
Advanced porous ceramics are a remarkable class of materials with important applications in engineering fields. Porosity features have received wide attention for their capability to influence all properties. In this paper, the correlation between pore structure and heat transfer has been studied. Different analytical procedures found in literature as well as an Intermingled Fractal Units’ model are proposed. Models predictions are compared with experimental data. It has been observed that IFU is particularly suitable to predict thermal conductivity values very close to experimental ones. This fact is related to its capability to replicate porous microstructures in terms of pore volume fraction, pore size range and pore size distribution.  相似文献   

4.
The thermal conductivity of a two-phase material, based on a glass matrix containing mm sized spherical alumina inclusions, has been studied as a function of the alumina phase volume fraction. The glass matrix and the alumina phase were chosen with almost identical coefficients of thermal expansion to ensure good thermal contact at the interface between the two phases. The thermal conductivity of the alumina phase was determined by local measurements on the inclusions using the mirage technique. For the glass phase and the two-phase samples, the thermal conductivity values were evaluated with the laser flash technique and compared to predictions by analytical models. The Maxwell–Eucken model gives a close agreement to these experimental values for alumina volume fractions up to 55%. In fact, we show that for large mm sized alumina inclusions, Hasselman's correction for the interface thermal resistance is not necessary.  相似文献   

5.
《Ceramics International》2016,42(5):5802-5809
Porous yittria-stabilized zirconia is an important advanced ceramic material for technological applications. One of the most important characteristics of this material is low thermal conductivity, which is greatly influenced by the presence of pores into the microstructure. In fact, air trapped in the pores represents a better thermal insulator. The role of the pore volume fraction on porous material characteristics has been extensively studied. On the other hand, the influence of the structure disorder, the pore size range and pore size distribution have been studied much less. In this study, an intermingled fractal model capable of relating thermal properties of ceramic materials and their pore microstructure has been proposed. Model predictions are found confirming the experimental data fairly well, even better than the others models available in the literature.  相似文献   

6.
Thermoelastic properties of various bi-continuous porous ceramics are simulated by a new finite element model. The model considers various particle shapes which allow for an independent variation of pore volume and particle contact area. Phenomena like neck formation, agglomeration, particle size distribution and coordination are included in the model geometry. Particle arrangement is modelled using cubic super cells as well as random particle positions. Young's moduli, Poisson's ratios and stress concentration factors are simulated and thermal shock resistance is estimated from these data. A close correlation between thermal conductivity and Young's modulus is found for all types of microstructure. Stress concentration is strongly affected by the particle shapes in the contact region.  相似文献   

7.
The microstructures of porous alumina materials with different porosities were established by introducing the departure factor of pore position and acentric factor of pore diameter to describe the distribution of pores in space and in size, respectively. The contribution of radiation and influence of pore distribution on the equivalent thermal conductivity were discussed based on numerical simulations by the finite volume method (FVM) considering both thermal conduction and radiation. When the pore diameter was less than 10?µm, the radiation component was less than 2%, and radiation could be neglected. Radiative heat transfer played a dominant role for materials with high porosity and large pore size at high temperatures. For micro pore materials (<?100?µm), broad pore size and non-uniform pore space distribution decreased the thermal conductivity across the entire temperature range. For materials with macro pores (>1?mm), broad pore distribution decreased the thermal conductivity at low temperatures and increased it at high temperatures. The basic prediction model of effective thermal conductivity for a two-component material, the Maxwell–Eucken model (ME1) and its modified model were corrected by introducing the pore structure factor. The results from experiments prove that the numerical values were satisfactory.  相似文献   

8.
多孔泡沫是一类低密度、高比表面积、具有独特性能的新型功能材料。实际多孔泡沫材料通常是非均质的,即其孔隙结构分布是随机的。为研究非均质多孔泡沫材料的导热性能,提出用孔隙均匀度作为表征孔隙结构分布随机性的参数,以多孔石墨泡沫为例,分析孔隙均匀度对多孔泡沫有效热导率的影响。数值计算结果表明:孔隙结构分布越不均匀,多孔泡沫材料的导热性能越差。根据计算结果提出了非均质石墨泡沫相对有效热导率的预测式,并与现有文献报道的结果进行了比较,发现当前结果呈现了孔隙结构随机性对材料有效热导率的影响,与ORNL实验结果更吻合。  相似文献   

9.
Experimental results and theoretical models are used to assess the effective thermal conductivity of porous inorganic polymer cements, often indicated as geopolymers, with porosity between 30 and 70 vol.%. It is shown that the bulk chemical composition affects the microstructure (grains size, pores size, spatial arrangement of pores, homogeneity, micro cracks, bleeding channels) with consequently the heat flow behaviour through the porous matrix. In particular, introduction of controlled fine pores in a homogeneous matrix of inorganic polymer cements results in an increase of pore volume and improvement of the thermal insulation. The variation of the effective thermal conductivity with the total porosity was found to be consistent with analytical models described by Maxwell–Eucken and Landauer.  相似文献   

10.
《Ceramics International》2017,43(16):13356-13363
Analytical and finite element analyses were carried out to investigate the influence of the pore sizes on the effective thermal conductivity, which is the main physical property related to the ceramic microstructure insulating capacity at high temperatures. Thermal conductivity was estimated by analytical models using Litovsky's and Rosseland's approaches for a monodisperse pore distribution, whereas via finite element analysis a high porosity microstructure with three different pore sizes was investigated. Based on this, an ideal pore size range (0.5–3.0 µm) was found that optimizes the reduction of thermal energy transmission in the 1000–1700 °C range. Furthermore, the ideal pore size range seems to be independent of the ceramic foam material. When considering a pore size distribution, the ideal range is narrowed due to less effective thermal radiation scattering by sub-micron and large pores. The results obtained showed that nanopores (< 0.1 µm) are not the best option to reduce thermal conductivity at high temperatures. This statement is supported by experimental data on nanopore aerogels, which show a significant thermal conductivity increase at the high temperature range.  相似文献   

11.
采用表面改性剂对多孔材料硅藻土进行改性,并以此作为单组分室温固化硅酮建筑密封胶的补强剂,研究了改性硅藻土多孔功能材料和表面改性剂用量、反应温度等工艺参数对密封胶性能的影响,通过扫描电镜(SEM)、X射线衍射(XRD)、氮气吸附-脱附等温测试(BET)和脱附孔径测试(BJH)等分析手段对多孔功能材料的形貌、物相、比表面积、孔体积和孔径等进行了表征。结果表明:当w(表面改性剂)=(2.5±0.5)%(相对于粉体质量而言)、w(粉体)=20%~30%(相对于总量而言)和反应温度为100~120℃时,改性硅藻土多孔材料的比表面积和孔体积较大、平均孔径较小,有利于密封胶力学性能的提高。  相似文献   

12.
《Ceramics International》2020,46(5):6038-6045
Here, we present a new combined freeze-casting and laser processing method for the design of yttria-stabilized zirconia (YSZ) based thermal-barrier coatings. YSZ ceramics with unidirectionally-aligned pore channels were created using the freeze-casting method. After sintering, top view and cross-sectional scanning electron microscopy (SEM) revealed the structural features of the preform, which exhibits a 74 ± 2% volume fraction of porosity and an average pore channel size of 30 ± 3 μm. The measured thermal conductivity of this porous structure was 0.27 ± 0.02 W/(m K), which is eight times lower than that of reported values for dense YSZ. Though high porosity is beneficial both from a structural and thermal response perspective, the open porosity could potentially be an issue from an application stand-point when evaluating the resistance of materials to calcium–magnesium–aluminum–silicon oxide (CMAS) attack. CMAS attack, which can originate from deposits of molten sand, ash, and dust, is one of the major causes of thermal barrier coating failure. Therefore, the surface of the porous samples was modified using a laser process to create a barrier to CMAS infiltration. SEM micrographs aided in determining the optimum laser parameters required to fully seal the surface using a laser treatment. The performance of the original porous and surface-modified YSZ was compared by conducting CMAS infiltration studies. Laser modification was shown to be a viable technique to significantly reduce CMAS infiltration in porous thermal barrier coatings.  相似文献   

13.
Thermal conductivity of highly porous zirconia   总被引:2,自引:0,他引:2  
Highly porous zirconia ceramic with nanometric sized grains was prepared from an 8 mol% yttria stabilised zirconia suspension mixed with a commercial latex. The pore volume fraction was varied from 45 to 75% by adjusting the thermal treatment between 750 and 1100 °C. Observations of the microstructure reveal variation in pore shape and size. Mean grain sizes are less than 70 nm. Mercury porosimetry measurements reveal a bimodal pore size distribution. Thermal diffusivity measurements were made with the laser flash technique in order to determine the thermal conductivity at room temperature. The thermal conductivity approaches a lower limit of 0.1 W m−1 K−1. Experimental results were shown to agree closely with predictions made with Landauer's effective medium expression for a two-phase system. The agreement was improved even further by taking into account the interfacial thermal resistance of the grain boundaries and the pore size distribution.  相似文献   

14.
《Ceramics International》2017,43(18):16430-16435
For recycling waste refractory materials in metallurgical industry, porous alumina ceramics were prepared via pore forming agent method from α-Al2O3 powder and slide plate renewable material. Effects of slide plate renewable material (SPRM) on densification, mechanical strength, thermal conductivity, phase composition and microstructure of the porous alumina ceramics were investigated. The results showed that SPRM effectively affected physical and thermal properties of the porous ceramics. With the increase of SPRM, apparent porosity of the ceramic materials firstly increased and then decreased, which brought an opposite change for the bulk density and thermal conductivity values, whereas the bending strength didn’t decrease obviously. The optimum sample A2 with 50 wt% SPRM introducing sintered at 1500 °C obtained the best properties. The water absorption, apparent porosity, bulk density, bending strength and thermal conductivity of the sample were 31.7%, 62.8%, 1.71 g/cm3, 47.1 ± 3.7 MPa and 1.73 W/m K, respectively. XRD analysis indicated that a small quantity of silicon carbide and graphite in SPRM have been oxidized to SiO2 during the firing process, resulting in rising the porous microstructures. SEM micrographs illustrated that rod-like mullite grains combined with plate-like corundum grains to endow the samples with high bending strength. This study was intended to confirm the preparation of porous alumina ceramics with high porosity, good mechanical properties and low thermal conductivity by using SPRM as pore forming additive.  相似文献   

15.
Three aspects, which significantly reduce heat transfer through a polycrystalline material, are considered in this paper: porosity, grain boundary thermal resistance and the state of the grain–grain contacts. Tin oxide and alumina were chosen as model systems. Tin oxide, without a sintering additive, does not densify during thermal treatment but grain growth is not inhibited and consequently the microstructure can be varied. In alumina, variation of the thermal treatment conditions varies both grain size and porosity. Thermal conductivity measurements, using the laser-flash technique, reveal that the thermal resistance of a pressed powder compact is almost independent of temperature and at least a factor of 2.5 greater than a consolidated material with similar pore volume fraction and grain size. The reduced contact area of the grain–grain interfaces in the green body can explain this as demonstrated by numerical simulation. We also show that larger grain size increases the thermal conductivity of the porous ceramic.  相似文献   

16.
A clay‐based material exhibiting high pore volume fraction and low thermal conductivity suitable for thermal insulation is described. Starting with a commercial clay containing >75% kaolinite, foams were made by mixing in water and methyl cellulose as a surfactant then beating. After drying at 70°C, the pore volume fraction >94% remains almost constant for treatments up to 1150°C. In contrast, the phases constituting the solid skeleton evolve strongly with removal of surfactant, dehydroxylation of kaolinite, and formation of mullite. The latter leads to greater mechanical strength but also an increase in thermal conductivity. Thermal treatment of the kaolin foam at 1100°C yields a suitable compromise between low thermal conductivity of 0.054 W.(m.K)?1 at room temperature with a compressive yield stress of 0.04 MPa. The radiation component in the effective thermal conductivity is <10% at 20°C increasing to >50% at 500°C.  相似文献   

17.
The grain size dependence of Young’s modulus and thermal conductivity of alumina and zirconia ceramics is predicted via phase mixture modeling, using both analytical and numerical approaches. Using typical values for the thickness and properties of the grain boundaries, the equivalent volume fraction of “grain boundary phase” is calculated for a given grain shape. Based on this volume fraction estimate and a rough estimate of the grain boundary properties, the effective properties of the polycrystalline materials are calculated and compared in terms of volume-equivalent sphere diameters. For grains of cubic and tetrakaidecahedral shape excellent agreement is found between numerical calculations and analytical predictions based on the lower Hashin-Shtrikman bound. The grain size dependence is extremely weak for Young’s modulus, but can be more significant for thermal conductivity, especially when the intrinsic conductivity of the material is high. The predictions are compared to literature data.  相似文献   

18.
Based on fractal theory, different two-dimensional fractal structures were constructed to simulate the practical porous media. Effective thermal conductivity for porous media was calculated by means of the finite volume method. Theoretical analysis of thermal response in the porous media under various heating conditions was performed with a multi-layer hyperbolic heat conduction model with volumetric heat generation. The results obtained in this paper indicate that pore size and micro distribution have a far-reaching impact on the heat conduction in porous media. If we assumed that both the thermal conductivity and the heat capacity of the solid phase is larger than those of liquid phase, decreasing the pore size and porosity is helpful to enhance the heat transfer in porous media and the peak of temperature increases with pore size and porosity. With the same pore size and porosity, the effect of the pore micro-geometric distribution on heat conduction in porous media is obvious. The method presented in this paper may suggest a valuable approach to theoretically evaluate the effect of pore micro-geometric structure on heat conduction in porous media.  相似文献   

19.
娄江峰  张华  王瑞祥 《化工进展》2015,34(2):495-499
采用两步法,以聚乙烯吡咯烷酮(PVP)为表面活性剂,制备了不同种类的纳米冷冻机油并对其分散稳定性进行了实验研究。采用Hot Disk热常数分析仪,测量了40℃下纳米冷冻机油(纳米材料为TiO2、Al2O3、Fe2O3、石墨和碳纳米管,体积分数为0.05%、0.1%、0.2%、0.5%、1%和2%)的热导率,分析研究了颗粒体积分数、粒径、材质以及表面活性剂等因素的影响。结果表明:纳米冷冻机油的热导率随着颗粒体积分数的提高而增大;相同体积分数下随着颗粒粒径的增大而减小,而相同粒径下又随着颗粒材质热导率的提高而增大;同时分散稳定性优的纳米冷冻机油热导率较高。基于纳米粒子的体积分数、粒径、团聚理论和布朗运动开发了纳米冷冻机油热导率预测模型,并与实验数据进行比较,发现预测值与90%的实验数据偏差在±3%以内,平均偏差1.6%。  相似文献   

20.
周明熙  周昊  马鹏楠  程明 《化工学报》2018,69(2):633-641
全面了解获取多孔烧结矿的热物理特性对于在钢铁企业中相关过程的运行优化和节能减排具有重要意义。在此前景下,无损的高精度X射线显微断层扫描技术被应用到表征烧结矿的孔隙结构并结合数值模拟来预测烧结矿的有效热导率。以40 μm的分辨率扫描了3个熟石灰添加水平下的烧结杯试验中获取的烧结矿样品。三维重建后的烧结矿可观测到各向异性的非常复杂的孔隙分布,导致其有效热导率也各向差异较大,形成复杂的内部温度场分布。烧结矿中0~300 μm的小孔隙在数量频率上占据大多数(约45%~50%),但仅占小部分的大于1 mm的大孔隙则贡献了约95%的孔隙体积占比,并主要决定了烧结矿的导热行为。3个烧结矿样品的有效热导率分别为0.645、0.682和0.784 W·m-1·K-1,对应的孔隙率分别为53.8%、53.1%和49.7%。通过与文献中的类似铁系聚合物的导热值,典型的经验式预测方程和结构分析模型等比较,证明了CT三维重建结合数值模拟的技术手段可有效捕捉烧结矿真实的多孔结构,从而比简单的经验式方程或结构分析模型能获取更精确的热物理行为的预测效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号