首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The suitability of ZnO:Al thin films for polycrystalline silicon (poly-Si) thin-film solar cell fabrication was investigated. The electrical and optical properties of 700 -nm-thick ZnO:Al films on glass were analyzed after typical annealing steps occurring during poly-Si film preparation. If the ZnO:Al layer is covered by a 30 nm thin silicon film, the initial sheet resistance of ZnO:Al drops from 4.2 to 2.2 Ω after 22 h annealing at 600 °C and only slightly increases for a 200 s heat treatment at 900 °C. A thin-film solar cell concept consisting of poly-Si films on ZnO:Al coated glass is introduced. First solar cell results will be presented using absorber layers either prepared by solid-phase crystallization (SPC) or by direct deposition at 600 °C.  相似文献   

2.
《Journal of power sources》2006,155(2):391-394
The effect of deposition temperature and film thickness on the electrochemical performance of amorphous-Si thin films deposited on a copper foil is studied. The electrochemical properties show optimum conditions at 200 °C deposition, and thinner films exhibit superior electrochemical performance than thicker ones. A film of 200 nm Si deposited at 200 °C exhibits excellent cycleability with a specific capacity of ∼3000 mAh g−1. This is probably due to optimization between the strong adhesion by Si/Cu interdiffusion and the film stress.  相似文献   

3.
In this study, undoped ZrO2 thin films were deposited on single-crystal silicon substrates using liquid phase deposition. The undoped films were formed by hydrolysis of zirconium sulfate (Zr(SO4)2·4H2O) in the presence of H2O. A continuous oxide film was obtained by controlling adequate (NH4)2S2O8 concentration. The deposited films were characterized by SEM, FT-IR, XRD and DTA. Typically, the films showed excellent adhesion to the substrate with uniform particle diameter about 150 nm. The thicknesses of ZrO2 film were about 200 nm after 10 h deposition at 30 °C. These films shows single tetragonal phase after heat treated at 600 °C. High annealing temperature (e.g. 750 °C) may result in the phase transformation of (t)-ZrO2 into (m)-ZrO2.  相似文献   

4.
A.A. Dakhel 《Solar Energy》2012,86(1):126-131
A comprehensive structural, optical, electrical, and optoelectronic study of arsenic-doped SnO2 was conducted. Several arsenic-doped SnO2 thin films with different arsenic content have been prepared on glass and silicon substrates by a vacuum thermal evaporation technique. The structural, electrical and optical study show that some of As5+ ions occupied locations in interstitial positions of SnO2 lattice. The prepared oxidized pure tin film is found to be consisting of orthorhombic and tetragonal SnO2 structure. The optical properties show that arsenic-doped SnO2 films are good transparent oxides. The bandgap of arsenic-doped SnO2 varies with arsenic content following the Moss–Burstein rule. The electrical behaviors show that the prepared arsenic-doped SnO2 films are degenerate semiconductors and might transform into insulators with increasing arsenic doping level. The electrical properties (resistivity, mobility, and carrier concentration) vary depending on the arsenic doping level. The SnO2 film doped with wt. 0.6% arsenic shows utmost dc electrical conductivity parameters: resistivity of 4.6 × 10?2 Ω cm, mobility of 6.0 cm2/V s, and carrier concentration of 2.25 × 1019 cm?3. From transparent-conducting-oxide (TCO) point of view, low arsenic concentration (less that 1%) is effective for SnO2 donor doping but not emulate doping with other dopant like Sb.  相似文献   

5.
《Journal of power sources》2003,114(1):113-120
Tin oxides and nickel oxide thin film anodes have been fabricated for the first time by vacuum thermal evaporation of metallic tin or nickel, and subsequent thermal oxidation in air or oxygen ambient. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements showed that the prepared films are of nanocrystalline structure with the average particle size <100 nm. The electrochemical properties of these film electrodes were examined by galvanostatic cycling measurements and cyclic voltammetry. The composition and electrochemical properties of SnOx (1<x<2) films strongly depend on the oxidation temperature. The reversible capacities of SnO and SnO2 films electrodes reached 825 and 760 mAh g−1, respectively, at the current density of 10 μA cm−2 between 0.10 and 1.30 V. The SnOx film fabricated at an oxidation temperature of 600 °C exhibited better electrochemical performance than SnO or SnO2 film electrode. Nanocrystalline NiO thin film prepared at a temperature of 600 °C can deliver a reversible capacity of 680 mAh g−1 at 10 μA cm−2 in the voltage range 0.01–3.0 V and good cyclability up to 100 cycles.  相似文献   

6.
《Journal of power sources》2004,136(2):303-306
A thin film of Si was vacuum-deposited onto a 30 μm thick Ni foil from a source of n-type of Si, the film thickness examined being 200–1500 Å. Li insertion/extraction evaluation was performed mainly with cyclic voltammetry (CV) and constant current charge/discharge cycling in propylene carbonate (PC) containing 1 M LiClO4 at ambient temperature. The cycleability and the Li accommodation capacity were found to depend on the film thickness. Thinner films gave larger accommodation capacity. A 500 Å thick Si film gave a charge capacity over 3500 mAh g−1 being maintained during 200 cycles under 2 C charge/discharge rate, while a 1500 Å film revealed around 2200 mAh g−1 during 200 cycles under 1 C rate. The initial charge loss could not be ignored but it could be reduced by controlling the deposition conditions.  相似文献   

7.
《Journal of power sources》2006,159(2):1048-1050
A thin yttria-stabilized zirconia (8 mol% YSZ) film was successfully fabricated on a NiO-YSZ anode substrate by a screen-printing technique. The scanning electron microscope (SEM) results suggested that the YSZ film thickness was about 31 μm after sintering at 1400 °C for 4 h in air. A 60 wt% La0.7Sr0.3MnO3 + 40 wt% YSZ was screen-printed onto the YSZ film surface as cathode. A single cell was tested from 650 to 850 °C using hydrogen as fuel and ambient air as oxidant, which showed an open circuit voltage (OCV) of 1.02 V and a maximum power density of 1.30 W cm−2 at 850 °C. The OCV was higher than 1.0 V, which suggested that the YSZ film was quite dense and that the fuel gas leakage through the YSZ film was negligible. Screen-printing can be a promising method for manufacturing YSZ films for solid oxide fuel cells (SOFCs).  相似文献   

8.
《Journal of power sources》2006,159(1):179-185
Spinel LiMn2O4 thin-film cathodes were obtained by spin-coating the chitosan-containing precursor solution on a Pt-coated silicon substrate followed by a two-stage heat-treatment procedure. The LiMn2O4 film calcined at 700 °C for 1 h showed the highest Li-ion diffusion coefficient, 1.55 × 10−12 cm2 s−1 (PSCA measurement) among all calcined films. It is attributed to the larger interstitial space and better crystal perfection of LiMn2O4 film calcined at 700 °C for 1 h. Consequently, the 700 °C-calcined LiMn2O4 film exhibited the best rate performance in comparison with the ones calcined at other temperatures.  相似文献   

9.
N.R. Mathews 《Solar Energy》2012,86(4):1010-1016
Tin selenide thin films of about 300 nm thickness were electrodeposited on SnO2:F coated transparent conductive oxide glass substrates. The optimum deposition potential was determined from cyclic voltammetry measurements. The films were polycrystalline with orthorhombic structure and the grain size was about 18 nm. SEM images showed a highly porous film structure. The band gap estimated from optical spectra of these films showed absorption due to direct transition occurring at 1.1 eV. Characteristic vibrational modes of the SnSe were observed in the Raman spectrum. The films are p-type, photosensitive, and the conductivity measured in dark was in the range of 10?5 Ω?1 cm?1. A prototype CdS/SnSe photovoltaic device showed an open circuit voltage of 140 mV and short circuit current density 0.7 mA/cm2.  相似文献   

10.
《Journal of power sources》2001,92(1-2):163-167
A cyclic voltammetric (CV) technique was used to study the combined effects of annealing temperature and time on the pseudocapacitance of thermally treated electroprecipitated nickel hydroxide thin films. Through the analysis of the areas of the CVs cycled between 0 and 0.35 V (versus Ag/AgCl) it is shown that the optimal treatment condition for maximum film capacitance occurs at 300°C for 3 h. On the other hand, using the anodic and cathodic peak currents of the CVs cycled between 0 and 0.5 V (versus Ag/AgCl), the maximum film capacitance is also shown to occur at a thermal treatment condition of 300°C and 3.5 h (or 320°C and 3.2 h for linear approximations). The two methods demonstrate simple ways of extracting useful information on the electrochemical performance properties of thin films.  相似文献   

11.
《Journal of power sources》2004,128(2):263-269
Thin films of LiCoO2 prepared by radio frequency magnetron sputtering on Pt-coated silicon are investigated under various deposited parameters such as working pressure, gas flow rate of Ar to O2, and heat-treatment temperature. The as-deposited film was a nanocrystalline structure with (1 0 4) preferred orientation. After annealing at 500–700 °C, single-phase LiCoO2 is obtained when the film is originally deposited under an oxygen partial pressure (PO2) from 5 to 10 mTorr. When the sputtering process is performed outside these PO2 values, a second phase of Co3O4 is formed in addition to the HT-LiCoO2 phase. The degree of crystallization of the LiCoO2 films is strongly affected by the annealing temperature; a higher temperature enhances the crystallization of the deposited LiCoO2 film. The grain sizes of LiCoO2 films annealed at 500, 600 and 700 °C are about 60, 95, and 125 nm, respectively. Cyclic voltammograms display well-defined redox peaks. LiCoO2 films deposited by rf sputtering are electrochemically active. The first discharge capacity of thin LiCoO2 films annealed at 500, 600 and 700 °C is about 41.77, 50.62 and 61.16 μAh/(cm2 μm), respectively. The corresponding 50th discharge capacities are 58.1, 72.2 and 74.9% of the first discharge capacity.  相似文献   

12.
Thin films of bismuth sulfide (Bi2S3), prepared on conductive tin-doped indium oxide (ITO)-glass substrates by chemical deposition showed a variation of optical band gap with thickness: 1.8 eV for a 50 nm film (deposited at 40 °C for 30 min) to 1.5 eV for a 200 nm film deposited for 2 h. The electronegativity for Bi2S3 compound is 5.3 eV, as estimated from the ionization energy and electron affinity of elemental Bi and S, and thus the electron affinity of chemically deposited Bi2S3 film was deduced to be 4.5 eV. In the energy level analysis of ITO/Bi2S3/P3OT/Au structure, Bi2S3 was established as an electron acceptor. To produce ITO/Bi2S3/P3OT/Au solar cell structures, poly3-octylthiophene (P3OT), prepared in the laboratory was dissolved in toluene and was drop-cast on the Bi2S3 film and a gold film was thermally evaporated. Under 100 mW/cm2 tungsten-halogen irradiation incident from the ITO-side, the cell using a Bi2S3 film with thickness of 50 nm has the highest open circuit voltage (Voc) of 440 mV and short-circuit current density (Jsc) of 0.022 mA/cm2. The addition of a CdS thin film (90 nm) between ITO and B2S3 would increase Voc to 480 mV, and Jsc to 0.035 mA/cm2. The role of surface morphology and optoelectronic properties of the Bi2S3 film in the photovoltaic performance of the junction is discussed.  相似文献   

13.
Cu2ZnSnS4 (CZTS) thin films were prepared by sulfurizing precursors deposited by electroplating. The precursors (Cu/Sn/Zn stacked layers) were deposited by electroplating sequentially onto Mo-coated glass substrates. Aqueous solutions containing copper sulfate for Cu plating, tin sulfate for Sn plating and zinc sulfate for Zn plating were used as the electrolytes. The precursors were sulfurized by annealing with sulfur at temperatures of 300, 400, 500 and 600 °C in an N2 gas atmosphere. The X-ray diffraction peaks attributable to CZTS were detected in thin films sulfurized at temperatures above 400 °C. A photovoltaic cell using a CZTS thin film produced by sulfurizing an electroplated Sn-rich precursor at 600 °C exhibited an open-circuit voltage of 262 mV, a short-circuit current of 9.85 mA/cm2 and an efficiency of 0.98%.  相似文献   

14.
Al and Y codoped ZnO (AZOY) transparent conducting oxide (TCO) thin films were first deposited on n-Si substrates by pulsed laser deposition (PLD) to form AZOY/n-Si heterojunction solar cells. However, the properties of the AZOY emitter layers are critical to the performance of AZOY/n-Si heterojunction solar cells. To estimate the properties of AZOY thin films, films deposited on glass substrates with various substrate temperatures (Ts) were analyzed. Based on the experimental results, optimal electrical properties (resistivity of 2.8 ± 0.14 × 10?4 Ω cm, carrier mobility of 27.5 ± 0.55 cm2/Vs, and carrier concentration of 8.0 ± 0.24 × 1020 cm?3) of the AZOY thin films can be achieved at a Ts of 400 °C, and a high optical transmittance of AZOY is estimated to be >80% (with glass substrate) in the visible region under the same Ts. For the AZOY/n-Si heterojunction solar cells, the AZOY thin films acted not only as an emitter layer material, but also as an anti-reflected coating thin film. Thus, a notably high short-circuit current density (Jsc) of 31.51 ± 0.186 mA/cm2 was achieved for the AZOY/n-Si heterojunction solar cells. Under an AM1.5 illumination condition, the conversion efficiency of the cells is estimated at only approximately 4% (a very low open-circuit voltage (Voc) of 0.24 ± 0.001 V and a fill factor (FF) of 0.51 ± 0.011) without any optimization of the device structure.  相似文献   

15.
This paper presents the fabrication of thin film crystalline silicon solar cells on foreign substrates like alumina, glass–ceramic (GC) and metallic foils (ferritic steel—FS) using seed layer approach, which employs aluminium induced crystallisation (AIC) of amorphous silicon. Effect of hydrogen content in a-Si:H precursor films on the AIC process has been studied and the results showed that defects in the AIC grown films increased with increase of hydrogen content. At the optimal thermal annealing conditions, the AIC grown poly-Si films showed an average grain size of 7.6, 26, and 8.1 μm for the films synthesised on alumina, GC, and FS, respectively. The grains were (1 0 0) oriented with a sharp Raman peak around 520 cm?1. Similarly, n-type seed layers were also fabricated by over-doping of as-grown AIC layers using a highly phosphorus doped glass solution. The resistivity of as-grown films reduced from 8.4×10?2 Ω cm (p-type) to 4.1×10?4 Ω cm (n-type) after phosphorus diffusion. These seed layers of n-type/p-type were thickened to form an absorber layer by vapour phase epitaxy or solid phase epitaxy. The passivation step was applied before the heterojunction formation, while it was after in the case of homojunction. Open circuit voltage of the junctions showed a strong dependence on the hydrogenation temperature and microwave (μW) power of electron cyclotron resonance (ECR) plasma of hydrogen. Effective passivation was achieved at a μW power of 650 W and hydrogenation temperature of 400 °C. Higher values of solar conversion efficiencies of 5% and 2.9% were achieved for the n-type and p-type heterojunction cells, respectively fabricated on alumina substrates. The analysis of the results and limiting factors are discussed in detail.  相似文献   

16.
《Journal of power sources》2002,105(2):239-242
Yttria stabilized zirconia (YSZ) films were grown by pulsed laser deposition (PLD) from a 8YSZ target using a KrF excimer laser source (248 nm). The films have been deposited under oxygen atmospheres on porous NiO/YSZ substrates heated from room temperature to 600 °C. YSZ films were obtained in the range of 1–2 μm thickness. The films have been investigated with respect to surface morphology, microstructure and film–substrate interface interaction. The film morphology varied from columnar to an irregular crystalline structure depending on the oxygen pressure and the substrate temperature. In all cases the films consisted of YSZ with the cubic fluorite structure. The formation of oxide layers under low oxygen pressures on the NiO/YSZ substrates is due to a film–substrate redox interaction. The NiO grains close to the coating interface are partially reduced and serve as an oxygen source for the oxidation of the film. The measured He leakage rates to analyze the gas tightness of the YSZ films have so far shown no improvements as compared with uncoated substrates.  相似文献   

17.
We report transmittance and conductivity measurements of aluminum-doped zinc oxide films grown by atomic layer deposition. The results show that the films have 80–90% transmittance in the visible region and good transmittance in the infrared. To our knowledge, this is the first time that the transmittance of aluminum-doped zinc oxide is reported to extend beyond 2500–5000 nm. Following annealing, an optimal sheet resistance of 25 Ω/□ was obtained for a 575 nm thick film with a carrier density of 2.4 × 1020 cm?3 without compromising the transmittance in the visible regime.  相似文献   

18.
This work utilizes electrophoretic deposition (EPD) as a facile and effective method to deposit binary energetic composites. In particular, micron-scale aluminum and nano-scale copper oxide were co-deposited as a thin film onto a conductive substrate without the use of surfactants. For comparative purposes, films of this energetic mixture were also prepared by drop-casting (DC) the premixed suspension directly onto the substrate, then allowing the liquid to dry. The structure and microscopic features of the two types of films were compared using optical and electron microscopies. The films prepared using EPD had an appreciable density of 2.6 g/cm3, or 51% the theoretical maximum density, which was achieved without any further processing. According to the electron microscopy analysis, the EPD films exhibited much more uniformity in composition and film thickness than those produced by DC. Upon ignition, the EPD films resulted in a smoother and faster combustion event compared to the DC films. The dispersion stability was improved by adding water and decreasing the particle concentration, resulting in dispersions stable for >30 min, an ample amount of time for EPD. Patterned electrodes with fine feature sizes (20 × 0.25 mm) were then combined with EPD to deposit thin films of thermite for flame propagation velocity studies. The fastest velocity (1.7 m/s) was observed for an equivalence ratio of 1.6 ± 0.2 (Al fuel rich composition). This peak value was used to investigate the effect of film mass/thickness on propagation velocity. The deposition mass was varied from 20 to 213 μg/mm2, corresponding to a calculated range of film thicknesses from 9.8 to 104 μm. At lower masses, a flame did not propagate, indicating a critical mass (20 μg/mm2) or thickness (9.8 μm). Over the range of thicknesses, in which self-propagating combustion was observed, the flame velocity was found to be independent of sample thickness. The lack of a thickness dependence suggests that under these particular conditions heat losses are negligible, and thus the velocity is predominantly governed by the intrinsic reactivity and heat transfer through the material.  相似文献   

19.
《Journal of power sources》2006,158(2):1379-1385
Nanocrystalline Co3O4 thin-film anodes were deposited on Pt-coated silicon and 304 stainless steel by radio frequency (RF) magnetron sputtering. The as-deposited and annealed cobalt oxide thin films showed smooth and crack-free morphologies. Both the as-deposited and annealed films exhibited spinel Co3O4 phase with nanocrystalline structure. High-temperature annealing enhanced the crystallinity of RF-sputtered cobalt oxide films due to rearrangement of cobalt and oxygen atoms. Electrochemical characterization of RF-sputtered films was carried out by cyclic voltammetry and charge/discharge tests in the voltage range of 0.3–3.0 V. Cyclic voltammetry plots showed that the RF-sputtered Co3O4 thin films were electrochemically active. X-ray photoelectron spectrometer (XPS) showed that the fresh cobalt oxide films had two peaks of Co3O4. In addition to the binding energy of cobalt oxide, the XPS spectrum of discharged film presented two additional binding energies correspond to Co metal. The first discharge capacities of as-deposited, 300, 500, and 700 °C-annealed films were 722.8, 772.5, 868.4, and 1059.9 μAh cm−2 μm−1, respectively. High-temperature annealing could enhance the capacity and cycle retention obviously. After 25 cycles discharging, the annealed films showed better cycle retention than as-deposited film. The 700 °C-annealed film exhibited excellent discharge capacity approximated to the theoretical capacity.  相似文献   

20.
Cu(In,Ga)Se2 (CIGS) thin films were grown by the three-stage process using a rf-plasma cracked Se-radical beam source. CuGaSe2 (CGS) films grown at a maximum substrate temperature of 550 °C and CuInSe2 (CIS) and CIGS films grown at the lower temperature of 400 °C exhibited highly dense surfaces and large grain size compared with films grown using a conventional Se-evaporative source. This result is attributed to the modification of the growth kinetics due to the presence of active Se-radical species and enhanced surface migration during growth. The effect on CIGS film properties and solar cell performance has been investigated. Enhancements in the cell efficiencies of 400 °C-grown CIS and CIGS solar cells have been demonstrated using a Se-radical source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号