首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An interesting hydrogen sensor based on a high electron mobility transistor (HEMT) device with a Pd–oxide–In0.49Ga0.51P gate structure is fabricated and demonstrated. The hydrogen sensing characteristics including hydrogen detection sensitivity and transient responses of the studied device under different hydrogen concentrations and temperature are measured and studied. The hydrogen detection sensitivity is related to a change in the contact potential at the Pd/insulator interface. The kinetic and thermodynamic properties of hydrogen adsorption are also studied. Experimentally, good hydrogen detection sensitivities, large magnitude of current variations (3.96 mA in 9970 ppm H2/air gas at room temperature) and shorter absorption response time (22 s in 9970 ppm H2/air gas at room temperature) are obtained for a 1.4 μm × 100 μm gate dimension device. Therefore, the studied device provides a promise for high-performance solid-state hydrogen sensor, integrated circuit (IC) and micro electro-mechanical system (MEMS) applications.  相似文献   

2.
This paper describes the design of, and the effects of basic environmental parameters on, a microelectromechanical (MEMS) hydrogen sensor. The sensor contains an array of 10 micromachined cantilever beams. Each cantilever is 500 μm wide×267 μm long×2 μm thick and has a capacitance readout capable of measuring cantilever deflection to within 1 nm. A 20-nm-thick coating of 90% palladium–10% nickel bends some of the cantilevers in the presence of hydrogen. The palladium–nickel coatings are deposited in ultra-high-vacuum (UHV) to ensure freedom from a “relaxation” artifact apparently caused by oxidation of the coatings. The sensor consumes 84 mW of power in continuous operation, and can detect hydrogen concentrations between 0.1 and 100% with a roughly linear response between 10 and 90% hydrogen. The response magnitude decreases with increasing temperature, humidity, and oxygen concentration, and the response time decreases with increasing temperature and hydrogen concentration. The 0–90% response time of an unheated cantilever to 1% hydrogen in air is about 90 s at 25 °C and 0% humidity.  相似文献   

3.
A novel Pt–Ti–O-gate Si–metal–insulator–semiconductor field-effect transistor (MISFET) hydrogen gas sensor has been proposed by Usagawa and Kikuchi (2010) [1]. The sensors consist of unique gate structures composed of Ti and oxygen accumulated regions around Pt grains on top of a novel mixing layer of nanocrystalline TiOx and superheavily oxygen-doped amorphous Ti formed on SiO2/Si substrates. The optimum Pt/Ti thickness and annealing conditions for most hydrogen safety monitoring sensor systems are obtained by annealing Pt(15 nm)/Ti(5 nm)-gate Si–MOS structures in air around 400 °C for 2 h. One of the advantages of the Pt–Ti–O-gate Si–MISFETs after 10 min of air-diluted 1000-ppm hydrogen exposure at 115 °C are reproducible and uniform threshold voltage of Vth in addition to large sensing amplitudes at a practically important hydrogen concentration range between 100 ppm and 1%. The analysis of device characteristics of the Pt–Ti–O-gate Si–MISFETs hydrogen sensors concludes that the oxidation process of the Ti layer is consistently explained by an oxidation model that the oxygen invasion into Ti layer comes from open air through Pt grain boundaries and at the same time Ti will evacuate into the Pt surface through Pt grain boundaries. During the course of this process, the invading oxygen will be balanced with the evacuating Ti so that the Ti layer keeps nearly the same thickness with the as grown states. Ti and oxygen will remains around Pt grains named Ti and oxygen merged corridors.  相似文献   

4.
5.
Gas sensing characteristics of WO3 powder and its physical properties under different heat treatment conditions have been investigated. The WO3 powder was synthesized by wet process from ammonium tungstate parapentahydrate and nitric solution. The precipitated product was then calcined at 300–800 °C for 2–12 h. The physical properties of the products were characterized by using X-ray diffractometer (XRD), scanning electron microscope (SEM), and BET method. It was found that the crystallite size, particle size and surface area of the WO3 powders were in the range of 30–45 nm, 0.1–3.0 μm and 1.2–3.7 m2/g, respectively. Calcination at higher temperature and longer time led to the increase of particle size by more than 300%, and reduction in specific surface area by more than 60%. However, the crystallite size was found to increase only by ∼30% under identical heat treatment. These results inferred that such heat treatment had more profound effect on crystallite aggregation than on crystallite growth. Gas sensing measurement showed that the largest change of output voltage to both ethyl alcohol and ammonia was obtained from the sensor calcined at 600 °C for 2 h, which had the highest surface area. However, the highest sensitivity which is defined as the ratio of sensor's resistance in air to that in the sample gas, Rair/Rgas, was obtained from the sensor calcined at 600 °C for 6 h due to its highest background resistance in air. Moreover, it was also found that the sensors were less sensitive to the oxygen content in the carrier gas and did not sensitive at all to water vapor.  相似文献   

6.
Nanoparticle films of PdxWO3, with x being 0.01 or 0.12, were made by dual-beam gas evaporation. The stochastic signal component (fluctuation-enhanced signal) originating from resistance fluctuations and the dc resistance (classical sensor signal) were measured during exposure to ethanol and hydrogen gas. For ethanol concentrations exceeding 50 ppm, changes in the resistance fluctuations gave 300 times larger detection sensitivity than changes in the dc resistance.  相似文献   

7.
The liquid petroleum gas (LPG) sensitivity characteristics of zinc oxide (ZnO) films have been studied for an optimised level of Pd loading. The sensor element comprises of a layer of chemically deposited ZnO on which an overlayer of palladium (Pd) sensitiser was formed by a chemical dipping technique. The room temperature resistance of the film was found to be a sensitive function of the quantity of palladium loading, which could be optimised for stable and reproducible sensor properties. The sensor characteristics that are dependent also on the operating temperature could be optimised at around 250 °C. A sensitivity of 88% was observed in presence of 1.6 vol.% LPG in air at this optimum temperature with reasonably fast response and recovery times.  相似文献   

8.
In order to reduce the response time of resistive oxygen sensors using porous cerium oxide thick film, it is important to ascertain the factors controlling response. Pressure modulation method (PMM) was used to find the rate-limiting step of sensor response. This useful method measures the amplitude of sensor output (H(f)) for the sine wave modulation of oxygen partial pressure at constant frequency (f). In PMM, “break” response time, which is minimum period in which the sensor responds precisely, can be measured. Three points were examined: (1) simulated calculations of PMM were carried out using a model of porous thick film in which spherical particles are connected in a three-dimensional network; (2) sensor response speed was experimentally measured using PMM; and (3) the diffusion coefficient and surface reaction coefficient were estimated by comparison between experiment and calculation. The plot of log f versus log H(f) in the high f region was found to have a slope of approximately −0.5 for both porous thick film and non-porous thin film, when the rate-limiting step was diffusion. Calculations showed the response time of porous thick film was 1/20 that of non-porous thin film when the grain diameter of the porous thick film was the same as the thickness of non-porous thin film. At 973 K, “break” response time (tb) of the resistive oxygen sensor was found by experiment to be 109 ms. It was concluded that the response of the resistive oxygen sensor prepared in this study was strongly controlled by diffusion at 923–1023 K, since the experiment revealed that the slope of plot of log f versus log H(f) in the high f region was approximately −0.5. At 923–1023 K, the diffusion coefficient of oxygen vacancy in porous ceria (DV) was expressed as follows: DV (m2s−1) = 5.78 × 10−4 exp(−1.94 eV/kT). At 1023 K, the surface reaction coefficient (K) was found to exceed 10−4 m/s.  相似文献   

9.
10.
Nanocrystalline undoped and Cd-doped γ-Fe2O3 powders were synthesized by an anhydrous solvent method and characterized by thermogravimetric analysis (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD) and transmission electron micrograph (TEM). The gas sensitivity measurements indicated that both the undoped (operated at 240 °C) and the 5 mol% Cd-doped γ-Fe2O3 sensors (operated at 270 °C) exhibited high response to acetone and ethanol, moderate response to petrol, poor response to liquefied petroleum gas (LPG), H2 and CO. Furthermore, the 5 mol% Cd-doped γ-Fe2O3 sensor presented shorter response and recovery times, better long-time stability, larger response and better selectivity to acetone and ethanol than the undoped sensor. The present undoped and Cd-doped γ-Fe2O3 sensors obtained by an anhydrous solvent method were almost insensitive to LPG, while the reported γ-Fe2O3 sensors prepared by a hydrous solution method were generally sensitive to LPG, suggesting that the preparation method played a key role in determining the gas sensing properties.  相似文献   

11.
A survey on wireless sensor network infrastructure for agriculture   总被引:1,自引:0,他引:1  
The hybrid wireless sensor network is a promising application of wireless sensor networking techniques. The main difference between a hybrid WSN and a terrestrial wireless sensor network is the wireless underground sensor network, which communicates in the soil. In this paper, a hybrid wireless sensor network architecture is introduced. The framework to deploy and operate a hybrid WSN is developed. Experiments were conducted using a soil that was 50% sand, 35% silt, and 15% clay; it had a bulk density of 1.5 g/cm3 and a specific density of 2.6 cm? 3. The experiment was conducted for several soil moistures (5, 10, 15, 20 and 25%) and three signal frequencies (433, 868 and 915 MHz). The results show that the radio signal path loss is smallest for low frequency signals and low moisture soils. Furthermore, the node deployment depth affected signal attenuation for the 433 MHz signal. The best node deployment depth for effective transmission in a wireless underground sensor network was determined.  相似文献   

12.
This paper describes a technique for the measurement of the electrolyte temperature in an operating polymer electrolyte fuel cell (PEFC). A patterned thin film gold thermistor embedded in a 16 μm thick parylene film was laminated in the Nafion® electrolyte layer for in situ temperature measurements. Experimental results show that the sensor has a linear response of (3.03 ± 0.09) × 10−3 °C−1 in the 20–100 °C temperature range and is robust enough to withstand the electrolyte expansion forces that occur during water uptake. An electrolyte temperature increase of 1.5 °C was observed in real-time when operating the fuel cell at 0.2 V and a current density of 0.19 A/cm2. The temperature sensitivity of the present sensor is in an order of magnitude better than the conventional micro-thermocouples that have been reported. Additionally, use of micro-fabrication techniques allows for an accurate placement of the temperature sensor within the fuel cell. Simulation results show that the sensor has no significant effect on the local temperature distribution.  相似文献   

13.
Mesoporous TiO2 nanoparticle thin films were prepared on MEMS microhotplate (μHP) platforms and evaluated as high-sensitivity conductometric gas sensor materials. The nanoparticle films were deposited onto selected microhotplates in a multi-element array via microcapillary pipette and were sintered using the microhotplate. The films were characterized by optical and scanning electron microscopies and by conductometric measurements. The thin films were evaluated as conductometric gas sensors based on the critical performance elements of sensitivity, stability, speed and selectivity. The nanoparticle films were compared with compact TiO2 films deposited via chemical vapor deposition (CVD) and the nanoparticle films were found to demonstrate higher sensitivity to target analytes. The nanoparticle films were also stable with regard to both baseline conductance and signal response over 60 h of continuous operation at high temperatures (up to 475 °C). Sensor response times were evaluated and the TiO2 nanoparticle films showed fast responses to the presence of analyte (≈5 s) and a response-time dependence on the analyte concentration. Control of the sensor operating temperature, an inherent benefit of the microhotplate platform, was employed to demonstrate the selectivity of the nanoparticle films.  相似文献   

14.
In order to detect the installation compressive stress and monitor the stress relaxation between two bending surfaces on a defensive furnishment, a wireless compressive-stress/relaxation-stress measurement system based on pressure-sensitive sensors is developed. The flexible pressure-sensitive stress sensor array is fabricated by using carbon black-filled silicone rubber-based composite. The wireless stress measurement system integrated with this sensor array is tested with compressive stress in the range from 0 MPa to 3 MPa for performance evaluation. Experimental results indicate that the fractional change in electrical resistance of the pressure-sensitive stress sensor changes linearly and reversibly with the compressive stress, and its fractional change goes up to 355% under uniaxial compression; the change rate of the electrical resistance can track the relaxation stress and give out a credible measurement in the process of stress relaxation. The relationship between input (compressive stress) and output (the fractional change in electrical resistance) of the pressure-sensitive sensor is ΔR/R0 = σ × 1.2 MPa?1. The wireless compressive stress measurement system can be used to achieve sensitivity of 1.33 V/MPa to the stress at stress resolution of 920.3 Pa. The newly developed wireless stress measurement system integrated with pressure-sensitive carbon black-filled silicone rubber-based sensors has advantages such as high sensitivity to stress, high stress resolution, simple circuit and low energy consumption.  相似文献   

15.
In situ patterned zinc oxide (ZnO) thin films were prepared by precipitation of Zn(NO3)2/urea aqueous solution and by microcontact printing of self-assembled monolayers (SAMs) on Al/SiO2/Si substrates. The visible precipitation of Zn(OH)2 from the urea containing Zn(NO3)2 solution was enhanced by increasing the reaction temperature and the amount of urea. The optimized condition for the ZnO thin films was found to be the Zn(NO3)2/urea ratio of 1/8, the precipitation temperature of 80 °C, the precipitation time of 1 h and the annealing temperature of 600 °C, respectively. SAMs are formed by exposing Al/SiO2/Si to solutions comprising of hydrophobic octadecylphosphonic acid (OPA) in tetrahydrofuran and hydrophilic 2-carboxylethylphosphonic acid (CPA) in ethanol. The ZnO thin film was then patterned with the heat treatment of Zn(OH)2 precipitated on the surface of hydrophilic CPA. The ZnO gas sensor was exposed to different concentrations of C3H8 (5000 ppm), CO (250 ppm) and NO (1000 ppm) at elevated temperatures to evaluate the gas sensitivity of ZnO sensors. The optimum operating temperatures of C3H8, CO and NO gases showing the highest gas sensitivity were determined to be 350, 400 and 200 °C, respectively.  相似文献   

16.
At the Ejby Mølle WWTP in Odense Denmark a software sensor predicts the ammonium and nitrite + nitrate concentration in real-time based on ammonium and redox potential measurements. The predicted ammonium concentration is used to control the length of the nitrification phase in a Biodenipho® activated sludge unit because the software sensor has a shorter response time and a better up-time than the ammonium meter. The software sensor simplifies meter service and can reduce maintenance costs. The computed nitrite + nitrate concentration is an added benefit of the software sensor. On 4 different days, series of grab samples of the mixed liquor were collected in the aeration tanks. The average difference between the ammonium concentrations in the grab samples and the predicted ammonium concentration was 0.2 mgN L?1 and the average difference between the predicted and the measured nitrite + nitrate concentration was 0.3 mgN L?1. The agreement between the predicted and the measured ammonium concentration in the grab samples was better than the agreement between the ammonium meter and the grab samples. This was due to the shorter response time of the software sensor compared with the ammonium meter.  相似文献   

17.
In present work, the phase equilibrium relations in the Ti-Ni-Hf ternary system, which are of great importance for the design of Ti-Ni based high temperature shape memory alloys, were investigated using diffusion triples and sixteen key equilibrated alloys. Based on the experimental results from electron-probe microscopy analysis (EPMA) and X-ray diffraction (XRD) techniques, two isothermal sections were constructed, which consist of 13 and 12 three-phase regions at 900 °C and 800 °C, respectively. Hf can substitute for Ti in TiNi and Ti2Ni phases increasing from 30, 62 at% at 800 °C to 36, 64 at% at 900 °C, respectively. The Hf7Ni10 and Hf9Ni11 phases show wide ternary composition ranges, while the solubility of Ti in HfNi5, Hf2Ni7, and HfNi phases are relatively limited. A new ternary phase of τ was detected for the first time, and the stoichiometry of τ phase is close to Ni:(Hf,Ti) = 11:14, with Ti substituting for Hf from ~5 at% to ~22 at%. The single-phase region of the τ phase became narrow as the decreasing of annealing temperature. Based on comparison of phase relations at 900 °C and 800 °C, it is speculated there is an invariant reaction TiNi + τ → HfNi + Ti2Ni at between 900 °C and 800 °C.  相似文献   

18.
Artificial neural network (ANN) approach was used to design an optimum Ni/Al2O3 catalyst for the production of hydrogen by the catalytic reforming of crude ethanol based on determining the inter-relationships between catalyst-preparation methods, nickel loading, catalyst characteristics and catalyst performance. ANN could predict hydrogen production performance of various Ni/Al2O3 catalysts of various elemental compositions and methods of preparation in the production of hydrogen by the catalytic reforming of crude ethanol in terms of crude-ethanol conversion, hydrogen selectivity and hydrogen yield. Specifically on catalyst design, ANN was used to determine the optimum catalyst conditions for obtaining maximum hydrogen production performance of a Ni/Al2O3 catalyst for the production of hydrogen by the catalytic reforming of crude ethanol. The optimal hydrogen yield was 4.4 mol %, and the associated crude-ethanol conversion and H2 selectivity for the optimal hydrogen yield were 79.6 and 91.4 mol%, respectively. The optimal catalyst was the one prepared by the coprecipitation method with the optimal nickel loading of 12.4 wt% and an optimal aluminum composition of 42.5 wt%.  相似文献   

19.
A sensor developed for measurement of water concentration inside glass/polymer encapsulation structures with a particular application area in accelerated aging of photovoltaic module encapsulants is described. An approximately 5 μm thick porous TiO2 film applied to a glass substrate with a conductive coating acts as the moisture-sensitive component. The response is calibrated with weather chamber experiments for sensors open to the environment and with diffusion experiments for sensors laminated under an encapsulant. For the interpretation of diffusion experiment results, a transport model describing the diffusion of water across the polymer/TiO2 interface is developed. The logarithm of AC resistance shows a linear dependence on water concentration in both open and encapsulated calibration. The first measurable response from an encapsulated 3.5 mm × 8 mm size sensor is obtained when approximately 10 μg of water has entered the film. Implications of the calibration results for sensor usage in accelerated aging tests are discussed.  相似文献   

20.
The planar Hall effect (PHE) sensor with a junction size of 3 μm × 3 μm for a single micro-bead detection has been fabricated successfully using a typical spin-valve thin film Ta(5)/NiFe(16)/Cu(1.2)/NiFe(2)/IrMn(15)/Ta(5) nm. The PHE sensor exhibits a sensitivity of about 7.2 μV Oe?1 in the magnetic field range of ±7 Oe approximately. We have performed an experiment to illustrated the possibility of single micro-bead detection by using a PHE sensor. A single micro-bead of 2.8 μm diameter size is secluded from 0.1% dilute solution of the Dynabeads® M-280 dropped on the sensor surface and is located on the sensor junction by using a micro magnetic needle. The comparison of the PHE voltage profiles in the field range from 0 to 20 Oe in the absence and presence of a single micro-bead identifies a single Dynabeads® M-280, the maximal signal change as large as ΔV  1.1 μV can be obtained at the field ~6.6 Oe. The results are well described in terms of the reversal of a basic single domain structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号