首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
This work presents a non-linear boundary element formulation applied to analysis of contact problems. The boundary element method (BEM) is known as a robust and accurate numerical technique to handle this type of problem, because the contact among the solids occurs along their boundaries. The proposed non-linear formulation is based on the use of singular or hyper-singular integral equations by BEM, for multi-region contact. When the contact occurs between crack surfaces, the formulation adopted is the dual version of BEM, in which singular and hyper-singular integral equations are defined along the opposite sides of the contact boundaries. The structural non-linear behaviour on the contact is considered using Coulomb's friction law. The non-linear formulation is based on the tangent operator in which one uses the derivate of the set of algebraic equations to construct the corrections for the non-linear process. This implicit formulation has shown accurate as the classical approach, however, it is faster to compute the solution. Examples of simple and multi-region contact problems are shown to illustrate the applicability of the proposed scheme.  相似文献   

2.
A system of singular integral equations is formulated based on the theory of complex variables with Cauchy kernels for the general problem of plane isotropic elastostatics. The integral equations are represented over the image of problems in multiply-connected regions. A numerical scheme is developed by introducing suitable complex polynomial functions for a discretized boundary curve and integrations are performed exactly for any arbitrary curved boundaries using complex contour integration. This reduces to an explicit set of complex linear algebraic equations with no need for numerical integrations. The major advantage of this technique is that numerical formulations is carried out in the complex plane and does not involve real variables which depend on are length. This yields highly accurate results in the presence of strong boundary curvature with steep stress gradients. Further, this formulation does not have boundary layer effects so that accurate stresses are obtained at any interior points in contrast to previous formulations where the accuracy deteriorates near the boundary points.  相似文献   

3.
A new spectral Galerkin formulation is presented for the solution of boundary integral equations. The formulation is carried out with an exact singularity subtraction procedure based on analytical integrations, which provides a fast and precise way to evaluate the coefficient matrices. The new Galerkin formulation is based on the exact geometry of the problem boundaries and leads to a non-element method that is completely free of mesh generation. The numerical behaviour of the method is very similar to the collocation method; for Dirichlet problems, however, it leads to a symmetric coefficient matrix and therefore requires half the solution time of the collocation method. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper an integral equation formulation is proposed for the analysis of orthotropic potential problems. The two primary integral equations of the method are derived from the original governing differential equation firstly by rewriting it in a slightly different form and then applying the direct boundary element method formulation. The solution procedure is based on the use of the fundamental solutions for the isotropic potential case and special attention is given to the differentiation of a singular integral which yields an additional term as well as to the evaluation of the resulting Cauchy principal value integral. A simple discretization for the boundary and its interior domain is adopted in order to express the primary integral equations of the method in matrix form. Three examples are presented, the results of which illustrate the satisfactory accuracy of the method. The main feature of the proposed formulation is its generality, which makes possible its direct extension to solve such as heat conduction or subsurface flow in anisotropic media and, foremost, to orthotropic and anisotropic elasticity or elastoplasticity.  相似文献   

5.
The most accurate boundary element formulation to deal with fracture mechanics problems is obtained with the implementation of the associated Green's function acting as the fundamental solution. Consequently, the range of applications of this formulation is dependent on the availability of the appropriate Green's function for actual crack geometry. Analytical Green's functions have been presented for a few single crack configurations in 2-D applications and require complex variable theory. This work extends the applicability of the formulation through the introduction of efficient numerical means of computing the Green's function components for single or multiple crack problems, of general geometry, including the implementation to 3-D problems as a future development. Also, the approach uses real variables only and well-established boundary integral equations.  相似文献   

6.
In this paper a sensitivity formulation using the boundary element method (BEM), for problems involving contact is presented. The proposed formulation is based on the implicit differentiation method (IDM), where the boundary integral equations are differentiated analytically with respect to the design variables. In the proposed formulation the design variables are defined in terms of the normal gap between the contact bodies. The analysis demonstrates that the proposed method is accurate and robust, as it does not resolve the whole system. The proposed method can be used for evaluating the sensitivities in any shape-optimisation problem involving contact.  相似文献   

7.
A boundary element formulation is presented for the general two-dimensional simulation of confined two-phase incompressible creeping Newtonian flow (visco-elastic elaids will be considered in a second part). The method requires the solution of two simultaneous integral equations on the interface between the two fluids and the confining solid boundary. The method is illustrated through the simulation of the deformation of a drop as it is driven by the ambient flow inside a convergent channel. The accuracy and convergence of the method are assessed by varying the time increment for a given number of boundary elements. The influences of the degree of channel convergence and viscosity ratio are investigated. Circular as well as elliptic initial drops are also considered.  相似文献   

8.
Abstract— The subject of hypersingular boundary integral equations is a rapidly developing topic due to the advantages which this kind of formulation offers compared to the standard boundary integral method. The hypersingular formulation is particularly well suited for fracture mechanics problems, where there are important gradients of the stress field and singularities. This formulation for time domain antiplane problems has been recently addressed by the authors and in the present paper, the formulation for time domain plane problems is presented and applied for the first time. A mixed Boundary Element approach based on the standard integral equation and the hypersingular integral equation is developed. The mixed formulation allows for a very simple discretization of the problem, where no subregion is needed. Conforming quadratic elements are used for the crack and the external boundaries. The hypersingular integral equation is used for collocation points within the crack elements, while the standard integral representation is used for the external boundaries. Several examples with different crack geometries are studied to illustrate the possibilities of the method. The Stress Intensity Factor (S.I.F.) is very accurately computed from the crack tip opening displacements along the crack tip element. The results show that the proposed approach for S.I.F. evaluation is simple and produces accurate solutions.  相似文献   

9.
A special boundary integral formulation had been proposed to analyse many engineering problems of conduction heat transfer in complex three-dimensional geometries (closely spaced surface and circular hole in infinite domain or simple modification of it) by Rezayat and Burton. One example of such geometries is the mold sets in the injection molding process. In this paper, an efficient and accurate approach for the design sensitivity analysis (DSA) is presented for these kinds of problems in the similar complex geometries using the direct differentiation approach (DDA) based on the above special boundary integral formulation. The present approach utilizes the implicit differentiation of the boundary integral equations with respect to the design variables (radii and locations of circular holes) to yield the sensitivity equations. A sample problem (heat transfer of injection molding cooling system) is solved to demonstrate the accuracy of the present sensitivity analysis formulation. Although the techniques introduced here are applied to a particular problem in heat transfer of injection molding cooling system, their potential application is quite broad.  相似文献   

10.
Direct second kind boundary integral formulation for Stokes flow problems   总被引:1,自引:1,他引:0  
A direct boundary element method is formulated for the Stokes flow problem based on an integral equation representation for the components of traction. For problems in which the components of velocity are prescribed on the boundary of the domain, this new formulation results in a hypersingular Fredholm integral equation of the second kind. A method of regularization to evaluate the hypersingular integral is discussed. For certain problems involving flows about particles, the integral equation representation for the tractions is not unique because of the existence of rigid body eigenmodes. A method to constrain out these rigid body modes is also discussed. Several example problems are considered in which this new formulation is compared to more traditional boundary element formulations.  相似文献   

11.
A new boundary element method is developed for solving thin-body thermoelastic problems in this paper. Firstly, the novel regularized boundary integral equations (BIEs) containing indirect unknowns are proposed to cancel the singularity of fundamental solutions. Secondly, a general nonlinear transformation available for high-order geometry elements is introduced in order to remove or damp out the near singularity of fundamental solutions, which is crucial for accurate solutions of thin-body problems. Finally, the domain integrals arising in both displacement and its derivative integral equations, caused by the thermal loads, are regularized using a semi-analytical technique. Six benchmark examples are examined. Results indicate that the proposed method is accurate, convergent and computationally efficient. The proposed method is a competitive alternative to existing methods for solving thin-walled thermoelastic problems.  相似文献   

12.
In this article, computational results from boundary integral equations and their normal derivatives for the same test cases are compared. Both kinds of formulations are desingularized on their real boundary. The test cases are chosen as a uniform flow past a circular cylinder for both the Dirichlet and Neumann problems. The results indicate that the desingularized method for the standard boundary integral equation has a much larger convergence speed than the desingularized method for the hypersingular boundary integral equation. When uniform nodes are distributed on a circle, for the standard boundary integral formulation the accuracies in the test cases reach the computer limit of 10−15 in the Neumann problems; and O(N−3) in the Dirichlet problems. However, for the desingularized hypersingular boundary integral formulation, the convergence speeds drop to only O(N−1) in both the Neumann and Dirichlet problems.  相似文献   

13.
The object-oriented design used to implement a self-regular formulation of the boundary element method is presented. The self-regular formulation is implemented to four integral equations: the displacement boundary integral equation, and the Somigliana's integral identities for displacement, stress and strain. The boundary-layer effect that arises in the classical BEM on the transition from interior to boundary points is eliminated and thus special integration schemes to treat nearly singular integrals become unnecessary. The self-regular formulations lead to very accurate results. Comparisons of displacements, stress and strain obtained from analytical solutions and the numerical results for bidimensional and tridimensional elastostatics problems are presented, and the self-regular formulation shows strong stability. The implemented code is open-source and is available under the GNU General Public License.  相似文献   

14.
A new boundary-integral formulation is proposed to analyse the heat transfer in complex three-dimensional geometries. One example of such geometry is the die sets in the injection moulding process. Networks of cooling conduits within the mould and the closely spaced die surfaces require special attention both in formulation and numerical treatment of the integral equations. The proposed formulation couples the boundary formula, the gradient of the boundary formula and the exterior formula. The derivation of the integral equations is presented here along with an efficient method for integration of some of the kernels in these equations and a semi-analytical procedure for the integration of the highly singular integrands which result from differentiating the boundary formula. Although the techniques introduced here are applied to a particular problem in heat transfer, their potential application is much broader.  相似文献   

15.
A boundary element formulation is presented for the general two-dimensional simulation of confined two-phase incompressible flow of viscoelastic fluids. A boundary-only formulation is implemented for fluids obeying the Oldroyd-B constitutive equation. Similarly to the formulation in Part I for Newtonian fluids [Khayat et al. Engng Anal Boundary Elements 1997;19:279], the method requires the solution of two simultaneous integral equations on the interface between the two fluids and the confining solid boundary. Although the problem is formulated for any confining geometry, the method is illustrated for a deforming drop as it is driven by the ambient flow inside a convergent channel. The accuracy and convergence of the method are assessed by comparison with the analytical solution for two-phase Taylor–Couette flow, leading to excellent agreement. Further assessment is made by varying the time increment and mesh size of the discretized boundary for a drop deforming in a convergent channel. The influence of fluid elasticity is examined when one or both fluids are viscoelastic.  相似文献   

16.
The Galerkin boundary node method (GBNM) is a boundary only meshless method that combines an equivalent variational formulation of boundary integral equations for governing equations and the moving least‐squares (MLS) approximations for generating the trial and test functions. In this approach, boundary conditions can be implemented directly and easily despite of the fact that the MLS shape functions lack the delta function property. Besides, the resulting formulation inherits the symmetry and positive definiteness of the variational problems. The GBNM is developed in this paper for solving three‐dimensional stationary incompressible Stokes flows in primitive variables. The numerical scheme is based on variational formulations for the first‐kind integral equations, which are valid for both interior and exterior problems simultaneously. A rigorous error analysis and convergence study of the method for both the velocity and the pressure is presented in Sobolev spaces. The capability of the method is also illustrated and assessed through some selected numerical examples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A mixed velocity–traction formulation is developed for the solution of exterior Stokes flow problems with rigid-body motion boundary conditions. The resulting integral equation is discretized with the qualocation method, which is shown to be more accurate than the more commonly used collocation method. The formulation is adopted for the analysis of the flow around complex micro structures. Examples demonstrate that the proposed technique is both accurate and well conditioned.  相似文献   

18.
A boundary integral equation formulation based on the complex Cauchy integral theorem is applied to two-dimensional soil-water phase change problems encountered in algid soils. The model assumes that potential theory applies in the estimation of heat flux along a freezing front of differential thickness and that quasi-steady-state temperatures occur along the problem domain boundary. Application of the boundary integral formulation to two-dimensional problems results in predicted locations of the freezing front which are highly accurate. Although the proposed formulation is based on the Cauchy integral theorem, similar models may be developed based on other forms of integration equation methods.  相似文献   

19.
A new symmetric boundary integral formulation for cohesive cracks growing in the interior of homogeneous linear elastic isotropic media with a known crack path is developed and implemented in a numerical code. A crack path can be known due to some symmetry implications or the presence of a weak or bonded surface between two solids. The use of a two-dimensional exponential cohesive law and of a special technique for its inclusion in the symmetric Galerkin boundary element method allows us to develop a simple and efficient formulation and implementation of a cohesive zone model. This formulation is dependent on only one variable in the cohesive zone (relative displacement). The corresponding constitutive cohesive equations present a softening branch which induces to the problem a potential instability. The development and implementation of a suitable solution algorithm capable of following the growth of the cohesive zone and subsequent crack growth becomes an important issue. An arc-length control combined with a Newton–Raphson algorithm for iterative solution of nonlinear equations is developed. The boundary element method is very attractive for modeling cohesive crack problems as all nonlinearities are located along the boundaries (including the crack boundaries) of linear elastic domains. A Galerkin approximation scheme, applied to a suitable symmetric integral formulation, ensures an easy treatment of cracks in homogeneous media and excellent convergence behavior of the numerical solution. Numerical results for the wedge split and mixed-mode flexure tests are presented.  相似文献   

20.
In this paper a two-dimensional hyper-singular boundary element method for elastoplastic fracture mechanics analysis with large deformation is presented. The proposed approach incorporates displacement and the traction boundary integral equations as well as finite deformation stress measures, and general crack problems can be solved with single-region formulations. Efficient regularization techniques are applied to the corresponding singular terms in displacement, displacement derivatives and traction boundary integral equations, according to the degree of singularity of the kernel functions. Within the numerical implementation of the hyper-singular boundary element formulation, crack tip and corners are modelled with discontinuous elements. Fracture measures are evaluated at each load increment, using the J-integral. Several cases studies with different boundary and loading conditions have been analysed. It has been shown that the new singularity removal technique and the non-linear elastoplastic formulation lead to accurate solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号