首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We use the singular function boundary integral method (SFBIM) to solve two model fracture problems on the plane. In the SFBIM, the solution is approximated by the leading terms of the local asymptotic solution expansion, which are also used to weight the governing biharmonic equation in the Galerkin sense. The discretized equations are reduced to boundary integrals by means of the divergence theorem and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multipliers. The main advantage of the method is that the leading stress intensity factors (SIFs) are calculated directly together with the Lagrange multipliers, i.e. no post-processing of the numerical solution is necessary. The numerical results for the two model problems show the fast convergence of the method and compare well with those of the collocation Trefftz method.  相似文献   

2.
The asymptotic solution of the singular stress field near a singular point is generally comprised of one or more singular terms in the form of Krλ-1fij(θ). Based on the asymptotic solution of the singular stress field and the common numerical solution (stresses or displacements) obtained by an ordinary tool such as the finite element method or boundary element method, a simple and effective numerical method is developed to calculate stress intensity factors for one and two singularities. Three examples show that the stress intensity factors evaluated using the method proposed in this paper are very accurate.  相似文献   

3.
This paper reports on the development of an efficient and accurate means for the direct computation of crack surface weight functions for two dimensional fracture mechanics analysis. Weight functions are mathematical representations which can be used to efficiently calculate stress intensity factors for a variety of crack loading and boundary conditions. The method is inherently capable of handling mixed-mode problems. The weight function capability is especially important for problems of fatigue crack growth modeling where the efficient calculation of stress intensity factors is crucial.The basis of the new formulation and numerical solution method is the boundary element method (BEM), as implemented for two dimensional fracture mechanics analysis. The paper will review the analytical formulation of the new BEM, the numerical solution algorithm, and a limited number of validation examples.  相似文献   

4.
We present explicit representation formulas for the coefficients of the singularities associated with mixed boundary value problems for the Poisson equation in two-dimensional domains with corners and three-dimensional domains with straight edges including cracks. We rely on partial Fourier analysis of the boundary value problem in the vicinity of the singularities to derive an asymptotic expansion of the solution. Hence, the edge flux intensity functions are expressed in terms of Fourier series and we give integral expressions from which the associated Fourier coefficients can be computed independently and in parallel. Our method does not require the knowledge of the dual singular solutions of the adjoint problems. Moreover, the constructive nature of the formulas provides in a straight forward way a strategy for the construction of efficient numerical methods for the accurate computation of the stress intensity factors and the edge flux intensity functions. Also, the formulas can be used to construct postprocessing algorithms for the standard finite element approximation of the solution of the boundary value problem to improve the accuracy. Examples that illustrate the efficiency and robustness of the formulas are also given.  相似文献   

5.
The method of fundamental solutions (MFS) is applied to solve linear elastic fracture mechanics (LEFM) problems. The approximate solution is obtained by means of a linear combination of fundamental solutions containing the same crack geometry as the actual problem. In this way, the fundamental solution is the very same one applied in the numerical Green's function (NGF) BEM approach, in which the singular behavior of embedded crack problems is incorporated. Due to severe ill-conditioning present in the MFS matrices generated with the numerical Green's function, a regularization procedure (Tikhonov's) was needed to improve accuracy, stabilization of the solution and to reduce sensibility with respect to source point locations. As a result, accurate stress intensity factors can be obtained by a superposition of the generalized fundamental crack openings. This mesh-free technique presents good results when compared with the boundary element method and estimated solutions for the stress intensity factor calculations.  相似文献   

6.
Crack propagation in concrete gravity dams is investigated using scaled boundary polygons coupled with interface elements. The concrete bulk is assumed to be linear elastic and is modelled by the scaled boundary polygons. The interface elements model the fracture process zone between the crack faces. The cohesive tractions are modelled as side-face tractions in the scaled boundary polygons. The solution of the stress field around the crack tip is expressed semi-analytically as a power series. It reproduces the singular and higher-order terms in an asymptotic solution, such as the William’s eigenfunction expansion when the cohesive tractions vanish. Accurate results can be obtained without asymptotic enrichment or local mesh refinement. The stress intensity factors are obtained directly from their definition and provide a convenient and accurate means to assess the zero-K condition, which determines the stability of a cohesive crack. The direction of crack propagation is determined from the maximum circumferential stress criterion. To accommodate crack propagation, a local remeshing algorithm that is applicable to any polygon mesh is augmented by inserting cohesive interface elements between the crack surfaces as the cracks propagate. Three numerical benchmarks involving crack propagation in concrete gravity dams are modelled. The results are compared to the experimental and other numerical simulations reported in the literature.  相似文献   

7.
In this paper we give the theoretical foundation for a dislocation and point-force-based approach to the special Green's function boundary element method and formulate, as an example, the special Green's function boundary element method for elliptic hole and crack problems. The crack is treated as a particular case of the elliptic hole. We adopt a physical interpretation of Somigliana's identity and formulate the boundary element method in terms of distributions of point forces and dislocation dipoles in the infinite domain with an elliptic hole. There is no need to model the hole by the boundary elements since the traction free boundary condition there for the point force and the dislocation dipole is automatically satisfied. The Green's functions are derived following the Muskhelishvili complex variable formalism and the boundary element method is formulated using complex variables. All the boundary integrals, including the formula for the stress intensity factor for the crack, are evaluated analytically to give a simple yet accurate special Green's function boundary element method. The numerical results obtained for the stress concentration and intensity factors are extremely accurate. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
对于对称正交铺层复合材料层板单向受拉分层问题,本文在引入混合边界条件的前提下,根据穆什海里什维利的求解各向同性平面问题与列赫尼兹基的求解各向异性平面问题的复变函数方法,得到了满足所有基本方程、裂纹表面边界条件与层间连续条件的应力场、位移场的本征展开式。进而利用分区广义变分原理代替裂纹表面以外的边界条件,确定应力强度因子。由于所有基本方程预先得以满足,在变分方程中只有线积分而无面积分。计算表明,本方法前期准备工作很少,计算节省机时,结果收敛迅速。  相似文献   

9.
This paper proposes a definition of generalized stress intensity factors that includes classical definitions for crack problems as special cases. Based on the semi-analytical solution obtained from the scaled boundary finite-element method, the singular stress field is expressed as a matrix power function with its dimension equal to the number of singular terms. Not only real and complex power singularities but also power-logarithmic singularities are represented in a unified expression without explicitly determining the type of singularity. The generalized stress intensity factors are evaluated directly from the scaled boundary finite-element solution for the singular stress field by following standard stress recovery procedures in the finite element method. The definition and evaluation procedure are valid to multi-material wedges composed of any number of isotropic and anisotropic materials. Numerical examples, including a cracked homogeneous plate, a bimaterial plate with an interfacial crack, a V-notched bimaterial plate and a crack terminating at a material interface, are analyzed. Features of this unified definition are discussed.  相似文献   

10.
This paper is concerned with stress intensity factors for cracks emanating from a triangular or square hole under biaxial loads by means of a new boundary element method. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfied and the crack‐tip displacement discontinuity elements proposed by the author. In the boundary element implementation, the left or the right crack‐tip displacement discontinuity element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The method is called a Hybrid Displacement Discontinuity Method (HDDM). Numerical examples are included to show that the method is very efficient and accurate for calculating stress intensity factors for plane elastic crack problems. In addition, the present numerical results can reveal the effect of the biaxial loads on stress intensity factors.  相似文献   

11.
We present stress intensity factor assessment using nodal displacements of the crack surfaces determined by the finite element method for cracked bodies. The equation is solved by expanding the crack opening displacement in the Chebyshev function, where crack front asymptotic behavior corresponds to the regulations of the linear elastic fracture mechanics. Results of the stress intensity factor calculations are obtained for test problems with analytical solution. Crack opening displacements are defined with the help of the 3D SPACE software package designed to model mixed variational formulation of the finite element method for displacements and strains of the thermoelastic boundary value problems. Translated from Problemy Prochnosti, No. 6, pp. 122–127, November–December, 2008.  相似文献   

12.
The dual boundary element method coupled with the weight function technique is developed for the analysis of three-dimensional elastostatic fracture mechanics mixed-mode problems. The weight functions used to calculate the stress intensity factors are defined by the derivatives of traction and displacement for a reference problem. A knowledge of the weight functions allows the stress intensity factors for any loading on the boundary to be calculated by means of a simple boundary integration without singularities. Values of mixed-mode stress intensity factors are presented for an edge crack in a rectangular bar and a slant circular crack embedded in a cylindrical bar, for both uniform tensile and pure bending loads applied to the ends of the bars. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
The weight function technique is used to analyse both static and dynamic three-dimensional fracture mechanics problems. The weight functions are first determined, in terms of Laplace transforms, by an indirect boundary element method. The stress intensity factor in the time domain is then obtained by Durbin's inversion method. The dynamic stress intensity factors are calculated for a central square crack in a square bar and a circular or elliptical crack in a cylinder under different types of loads. An extension of the method for arbitrary dynamic loads is developed via a dynamic Green's function approach.  相似文献   

14.
This paper concerns stress intensity factors of cracks emanating from a triangular or square hole in an infinite plate subjected to internal pressure calculated by means of a boundary element method, which consists of constant displacement discontinuity element presented by Crouch and Starfied and crack tip displacement discontinuity elements proposed by the author. In the boundary element implementation the left or the right crack tip displacement discontinuity element is placed locally at corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Numerical examples are included to show that the method is very efficient and accurate for calculating stress intensity factors of plane elasticity crack problems. Specifically, the numerical results of stress intensity factors of cracks emanating from a triangular or square hole in an infinite plate subjected to internal pressure are given.  相似文献   

15.
An eXtended Finite Element Method (XFEM) is presented that can accurately predict the stress intensity factors (SIFs) for thermoelastic cracks. The method uses higher order terms of the thermoelastic asymptotic crack tip fields to enrich the approximation space of the temperature and displacement fields in the vicinity of crack tips—away from the crack tip the step function is used. It is shown that improved accuracy is obtained by using the higher order crack tip enrichments and that the benefit of including such terms is greater for thermoelastic problems than for either purely elastic or steady state heat transfer problems. The computation of SIFs directly from the XFEM degrees of freedom and using the interaction integral is studied. Directly computed SIFs are shown to be significantly less accurate than those computed using the interaction integral. Furthermore, the numerical examples suggest that the directly computed SIFs do not converge to the exact SIFs values, but converge roughly to values near the exact result. Numerical simulations of straight cracks show that with the higher order enrichment scheme, the energy norm converges monotonically with increasing number of asymptotic enrichment terms and with decreasing element size. For curved crack there is no further increase in accuracy when more than four asymptotic enrichment terms are used and the numerical simulations indicate that the SIFs obtained directly from the XFEM degrees of freedom are inaccurate, while those obtained using the interaction integral remain accurate for small integration domains. It is recommended in general that at least four higher order terms of the asymptotic solution be used to enrich the temperature and displacement fields near the crack tips and that the J- or interaction integral should always be used to compute the SIFs.  相似文献   

16.
基于线性电磁弹性理论,获得了压电-压磁板条中反平面裂纹尖端附近的奇异应力、电场和磁场。假设裂纹位于和板条边界平行的中心位置,并且裂纹是电磁渗透型的。利用Fourier变换,将裂纹面的混合边值问题化为对偶积分方程,即而归结为第二类Fredholm积分方程。通过渐近分析,得到了裂纹尖端附近应力、应变、电位移、电场、磁场和磁感的封闭表达式。结果表明,对于电磁渗透裂纹,电场强度因子和磁场强度因子总为0;板条的宽度对应力强度因子有显著的影响;能量释放率总为正值。  相似文献   

17.
This paper applies an improved singular boundary method (SBM) in conjunction with domain decomposition technique to stress analysis of layered elastic materials. For problems under consideration, the interface continuity conditions are approximated in the same manner as the boundary conditions. The multi-layered coating system is decomposed into multiple subdomains in terms of each layer, in which the solution is approximated separately by the SBM representation. The singular boundary method is a recent meshless boundary collocation method, in which the origin intensity factor plays a key role for its accuracy and efficiency. This study also introduces new strong-form regularization formulas to accurately evaluate the origin intensity factors for elasticity problem. Consequently, we dramatically improve the accuracy and convergence of SBM solution of the elastostatics problems. The proposed domain-decomposition SBM is tested on two benchmark problems. Based on numerical results, we discuss merits of the present SBM scheme over the other boundary discretization methods, such as the method of fundamental solution (MFS) and the boundary element method (BEM).  相似文献   

18.
In this paper a dual boundary element formulation is developed and applied to the evaluation of stress intensity factors in, and propagation of, axisymmetric cracks. The displacement and stress boundary integral equations are reviewed and the asymptotic behaviour of their singular and hypersingular kernels is discussed. The modified crack closure integral method is employed to evaluate the stress intensity factors. The combination of the dual formulation with this method requires the adoption of an interpolating function for stresses after the crack tip. Different functions are tested under a conservative criterion for the evaluation of the stress intensity factors. A crack propagation procedure is implemented using the maximum principal stress direction rule. The robustness of the technique is assessed through several examples where results are compared either to analytical ones or to BEM and FEM formulations.  相似文献   

19.
This paper presents a procedure for dynamic stress intensity factor computations using traction singular quarter-point boundary elements. Cracks in a complete space, a half-space and a finite body loaded by steady state waves are studied. Curves for elastodynamic stress intensity factors vs frequency are presented. Transient stress intensity factors are computed by means of Fourier transform. The results are compared with other authors and shown to be accurate in all cases. The dynamic stress intensity factors are computed in a very direct and easy way to implement. This versatile procedure allows for the study of problems with complex geometry that include one or several cracks.  相似文献   

20.
The present paper further develops the boundary element singularity subtraction technique, to provide an efficient and accurate method of analysing the general mixed-mode deformation of two-dimensional linear elastic structures containing sharp notches. The elastic field around sharp notches is singular. Because of the convergence difficulties that arise in numerical modelling of elastostatic problems with singular fields, these singularities are subtracted out of the original elastic field, using the first term of the Williams series expansion. This regularization procedure introduces the stress intensity factors as additional unknowns in the problem; hence extra conditions are required to obtain a solution. Extra conditions are defined such that the local solution in the neighbourhood of the notch tip is identical to the Williams solution; the procedure can take into account any number of terms of the series expansion. The standard boundary element method is modified to handle additional unknowns and extra boundary conditions. Analysis of plates with symmetry boundary conditions is shown to be straightforward, with the modified boundary element method. In the case of non-symmetrical plates, the singular tip-tractions are not primary boundary element unknowns. The boundary element method must be further modified to introduce the boundary integral stress equations of an internal point, approaching the notch-tip, as primary unknowns in the formulation. The accuracy and efficiency of the method is demonstrated with some benchmark tests of mixed-mode problems. New results are presented for the mixed-mode analysis of a non-symmetrical configuration of a single edge notched plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号