首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microwave dielectric properties of LiNb3O8 ceramics were investigated as a function of the sintering temperature and the amount of TiO2 additive. LiNb3O8 ceramics, which were calcined at 750 °C and sintered at 1075 °C for 2 h, showed a dielectric constant (ɛr) of 34, a quality factor (Q × f0) of 58,000 GHz and a temperature coefficient of resonance frequency (τf) of −96 ppm/°C, respectively. The density of the samples influenced the properties of these properties. As the TiO2 content increased in the LiNb3O8–TiO2 system, ɛr and τf of the material were increased due to the mixing effect of TiO2 phase, which has higher dielectric constant and larger positive τf. The 0.65LiNb3O8–0.35TiO2 ceramics showed a dielectric constant ɛr of 46.2, a quality factor (Q × f0) of 5800 GHz and a temperature coefficient of resonance frequency τf of near to 0 ppm/°C.  相似文献   

2.
Re3Ga5O12 (Re: Nd, Sm, Eu, Dy and Yb) garnet ceramics sintered at 1350–1500 °C had a high quality factor (Q × f) ranging from 40,000 to 192,173 GHz and a low dielectric constant (ɛr) of between 11.5 and 12.5. They also exhibited a relatively stable temperature coefficient of resonant frequency (τf) in the range of −33.7 to −12.4 ppm/°C. In order to tailor the τf value, TiO2 was added to the Sm3Ga5O12 ceramics, which exhibited good microwave dielectric properties. The relative density and grain size increased with addition of TiO2, resulting in the enhancement of Q × f value. The τf increased with the addition of TiO2. Excellent microwave dielectric properties of ɛr = 12.4, Q × f = 240,000 GHz and τf = −16.1 ppm/°C were obtained from the Sm3Ga5O12 ceramics sintered at 1450 °C for 6 h with 1.0 mol% TiO2. Therefore, Re3Ga5O12 ceramics, especially TiO2-added Sm3Ga5O12 ceramics are good candidates for advanced substrate materials in microwave integrated circuits (MICs) applications.  相似文献   

3.
Recently forsterite has been reported as an excellent dielectric material for millimeter wave application. However, its temperature variation of the resonant frequency (τf) is relatively large which precludes its immediate use in practical applications. In this paper, we report the effect of substituting Ca and Mn for Mg on the microwave dielectric properties of forsterite. The composition 0.975Mg2SiO4–0.025Mn2SiO4 showed excellent Q × f value of 180,000 GHz with a τf of −71 ppm/°C. The end member Mn2SiO4, showed a Q × f of 50,000GHz, ɛr of 8.52 and τf  =  −90 ppm/°C. In the case of Ca substitution for Mg, τf shifted to high negative value with increasing amount of Ca. However, Q × f did not show much change in its value. It is suggested that the increase of τf towards a more negative value is related to the ionic radii of the substitutes.  相似文献   

4.
《Ceramics International》2015,41(6):7783-7789
YAG ceramics with good dielectric properties were prepared via a modified pyrolysis method, with yttrium nitrate as the yttrium source and combined aluminium sulphate and aluminium nitrate as aluminium sources, and subsequent sintering in a muffle furnace. The effects of the different aluminium sources on the powder characteristic and the impact of sintering temperature, sintering aids (TEOS) and additive (TiO2) on the dielectric properties of the ceramics were studied. The results show that well-dispersed pure YAG nano-powders can be obtained after calcination at 1000 °C with an aluminium sulphate and aluminium nitrate molar ratio of 1.5:2. The relative density, permittivity (εr) and quality factor (Q×f) of the YAG ceramics increase with sintering temperature and TEOS addition. TiO2 can greatly promote τf to near-zero but decreases Q×f. The relative density, εr, Q×f and τf of the YAG–1 wt% TEOS–1 wt% TiO2 ceramic obtained at 1520 °C are 97.6%, 9.9, 71, 738 GHz and −30 ppm/°C, respectively.  相似文献   

5.
《Ceramics International》2016,42(7):7962-7967
Y2O3 ceramics with good dielectric properties were prepared via co-precipitation reaction and subsequent sintering in a muffle furnace. The effects of Nd doping and sintering temperature on microwave dielectric properties were studied. With the increase in sintering temperature, the density, quality factor (Q×f), and dielectric constant (εr) values of pure Y2O3 ceramics increased to the maximum and then gradually decreased. The Y2O3 ceramics sintered at 1500 °C for 4 h showed optimal dielectric properties: εr=10.76, Q×f=82, 188 GHz, and τf=−54.4 ppm/°C. With the addition of Nd dopant, the Q×f values, εr, and τf of the Nd: Y2O3 ceramics apparently increased, but excessive amount degraded the quality factor. The Y2O3 ceramics with 2 at% Nd2O3 sintered at 1460 °C displayed good microwave dielectric properties: εr=10.4, Q×f=94, 149 GHz and τf=−46.2 ppm/°C.  相似文献   

6.
Novel temperature stable MgMoO4–TiO2 microwave dielectric ceramics were prepared by a solid state reaction process at low temperature (950 °C). As TiO2 content increases, the relative permittivity increases while the Q × f value decreases, and the variation mechanisms are proposed, respectively. The temperature coefficient of resonant frequency (τf) shifts to the positive direction as TiO2 is added. The mixture mechanisms of τf value for two-phase composite materials are supposed. A near-zero τf value (3.2 ppm/°C) is obtained when x = 0.3, with εr = 9.13 ± 0.03 and Q × f = 11,990 GHz. The 0.7MgMoO4–0.3TiO2 composites are considered to be appropriate as a low temperature co-fired ceramic material for microwave wireless communication applications.  相似文献   

7.
The effects of ZnB2O4 glass additions on the sintering temperature and microwave dielectric properties of Ba3Ti5Nb6O28 have been investigated using dilatometer, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and a network analyzer. The pure Ba3Ti5Nb6O28 system showed a high sintering temperature (1250 °C) and had the good microwave dielectric properties: Q × f of 10,600 GHz, ɛr of 37.0, τf of −12 ppm/°C. It was found that the addition of ZnB2O4 glass to Ba3Ti5Nb6O28 lowered the sintering temperature from 1250 to 925 °C. The reduced sintering temperature was attributed to the formation of ZnB2O4 liquid phase and B2O3-rich liquid phases. Also the addition of ZnB2O4 glass enhanced the microwave dielectric properties: Q × f of 19,100 GHz, ɛr of 36.6, τf of 5 ppm/°C. From XPS and XRD studies, these phenomena were explained in terms of the reduction of oxygen vacancies and the formation of secondary phases having the good microwave dielectric properties.  相似文献   

8.
(1  x)β-Ca2P2O7xTiO2 were prepared by solid-state reaction. The mixture behavior and microwave dielectric properties were investigated using X-ray powder diffraction and a network analyzer, respectively. X-ray powder diffraction patterns showed that β-Ca2P2O7 and TiO2 existed in a mixture form, which was also confirmed by SEM analysis. It was shown that TiO2, which has positive temperature coefficient of the resonant frequency (τf), compensated the negative τf of β-Ca2P2O7 (−53 ppm/°C) through mixture formation. The variation of dielectric properties with a function of TiO2 contents could be explained using mixture rule. In the 0.3 < x < 0.4 regions, τf value could be successfully reduced almost zero. In particular, at x = 0.3, good microwave dielectric properties was obtained: Q × f = 44,000, ɛr = 10.9, and τf = −11 ppm/°C.  相似文献   

9.
The effect of dopants on BaTi4O9 (BT4) and Ba2Ti9O20 (B2T9) ceramics by the reaction-sintering process was investigated. CuO addition is more effective in lowering the sintering temperature of BT4 and B2T9 ceramics. MnO2 and CuO addition are effective to obtain temperature stable BT4 ceramics. With MnO2 addition, Q × f of BT4 ceramics could be raised. ZrO2 addition is effective to obtain B2T9 ceramics with higher dielectric constant. With CuO addition, τf of B2T9 ceramics shifted toward negative values and 0 ppm/°C could be obtained. Optimum properties in BT4 doped with MnO2 of ɛr = 37.1, Q × f = 51,200 GHz (at 7 GHz) and τf = 0 ppm/°C and in B2T9 doped with ZrO2 of ɛr = 37.9, Q × f = 39,700 GHz (at 7 GHz) and τf = 5.9 ppm/°C were obtained.  相似文献   

10.
《Ceramics International》2007,33(6):951-955
The microwave dielectric properties of Sm(Zn1/2Ti1/2)O3 ceramics have been investigated. Sm(Zn1/2Ti1/2)O3 ceramics were prepared by conventional solid-state route with various sintering temperatures and times. The prepared Sm(Zn1/2Ti1/2)O3 exhibited a mixture of Zn and Ti showing 1:1 order in the B-site. Higher sintered density of 7.01 g/cm3 can be produced at 1310 °C for 2 h. The dielectric constant values (ɛr) of 22–31 and the Q × f values of 4700–37,000 (at 8 GHz) can be obtained when the sintering temperatures are in the range of 1250–1370 °C for 2 h. The temperature coefficient of resonant frequency τf was a function of sintering temperature. The ɛr value of 31, Q  ×  f value of 37,000 (at 8 GHz) and τf value of −19 ppm/°C were obtained for Sm(Zn1/2Ti1/2)O3 ceramics sintered at 1310 °C for 2 h. For applications of high selective microwave ceramic resonator, filter and antenna, Sm(Zn1/2Ti1/2)O3 is proposed as a suitable material candidate.  相似文献   

11.
Microwave dielectric ceramic materials based on cerium [CeO2–0.5AO–0.5TiO2 (A = Mg, Zn, Ca, Mn, Co, Ni, W)] have been prepared by a conventional solid state ceramic route. The crystal structure was studied by X-ray diffraction, microstructure by scanning electron microscopy (SEM) techniques and the phase composition was studied using energy dispersive X-ray analysis (EDXA). The sintered ceramics had a relative dielectric constant (ɛr) in the range 17–65 and quality factor Quxf up to 50,000 GHz and a temperature variation of resonant frequency (τf) ranging from a negative value (−62 ppm/°C) to a high positive value (+399 ppm/°C). The majority of the synthesized ceramics were of a two phase composite consisting of a fluorite CeO2 and perovskite ATiO3 phase. The microwave dielectric properties were further tailored by adding various amounts of dopants of different valencies to the calcined powder. This made it possible to either tune τf to zero or improved the quality factor further.  相似文献   

12.
The microwave dielectric properties of low-loss A0.5Ti0.5NbO4 (A = Zn, Co) ceramics prepared by the solid-state route had been investigated. The influence of various sintering conditions on microwave dielectric properties and the structure for A0.5Ti0.5NbO4 (A = Zn, Co) ceramics were discussed systematically. The Zn0.5Ti0.5NbO4 ceramic (hereafter referred to as ZTN) showed the excellent dielectric properties, with ɛr = 37.4, Q × f = 194,000 (GHz), and τf = −58 ppm/°C and Co0.5Ti0.5NbO4 ceramic (hereafter referred to as CTN) had ɛr = 64, Q × f = 65,300 (GHz), and τf = 223.2 ppm/°C as sintered individually at 1100 and 1120 °C for 6 h. The dielectric constant was dependent on the ionic polarizability. The Q × f and τf are related to the packing fraction and oxygen bond valence of the compounds. Considering the extremely low dielectric loss, A0.5Ti0.5NbO4 (A = Zn and Co) ceramics could be good candidates for microwave or millimeter wave device application.  相似文献   

13.
SrLnGaO4 (Ln = La and Nd) ceramics with K2NiF4 structure were prepared by solid-state reaction approach, and the microwave dielectric properties and microstructures were characterized. The SrLaGaO4 and SrNdGaO4 ceramics with minor secondary phase, Sr3Ga2O6, were obtained by sintering at 1250–1350 °C for 3 h, and good microwave dielectric characteristics were achieved: the ceramics had (1) ɛ = 20.3, Q × f = 16,219 GHz, and τf = −33.5 ppm/°C for SrLaGaO4; and (2) ɛ = 21.4, Q × f = 16,650 GHz, and τf = 7.1 ppm/°C for SrNdGaO4.  相似文献   

14.
Forsterite (Mg2SiO4) possesses a high quality factor (Q·f) of 270,000 GHz and a low dielectric constant ɛr of 6.8. However, it shows a relatively large negative temperature coefficient of resonant frequency τf of −73 ppm/°C. For microwave telecommunication, a τf of nearly 0 ppm/°C is desirable to keep the frequency stability. In order to improve τf, we have tried to produce pure Mg2SiO4–TiO2 composite ceramics with no secondary phases using a liquid phase deposition (LPD) method. Porous Mg2SiO4 ceramics was prepared by sintering Mg2SiO4 with polymethyl methacrylate (PMMA) particles, and then TiO2 was filled in the pores of Mg2SiO4 by the LPD method. The porosity and microstructure of porous Mg2SiO4 was controlled by amount and particle sizes of PMMA and formation process. τf of Mg2SiO4 filled with TiO2 by LPD method was improved to −46 ppm/°C.  相似文献   

15.
The microwave dielectric properties of Ca(Li1/4Nb3/4)O3–CaTiO3 ceramics have been investigated with regard to calcination temperature and the amount of CaTiO3 additive. Ca(Li1/4Nb3/4)O3 ceramics with an orthorhombic crystal structure can be synthesized by the conventional mixed oxide method by calcining at 750 °C and sintering at 1275 °C. The dielectric constant (ɛr), quality factor (Q × f0) and temperature coefficient of resonant frequency (τf) for Ca(Li1/4Nb3/4)O3 ceramics are 26, 13,000 GHz and −49 ± 2 ppm/°C, respectively. With increase in the CaTiO3 content, ɛr and τf are increased and the quality factor decreased due to the solid-solution formation between Ca(Li1/4Nb3/4)O3 and CaTiO3. The 0.7Ca(Li1/4Nb3/4)O3–0.3CaTiO3 ceramic exhibits ɛr of 44, quality factor (Q × f0) of 12,000 GHz and τf of −9 ± 1 ppm/°C.  相似文献   

16.
A novel low-loss microwave dielectric material MgZrNb2O8 was reported for the first time. Single-phase MgZrNb2O8 was prepared by a conventional mixed-oxide route and sintered in the temperature range of 1280–1360 °C. The microstructure and microwave dielectric properties were investigated systematically. The X-ray diffraction results showed that all samples exhibit a single wolframite structure. When the sintering temperature was lower than 1340 °C, the Q×f value mainly depended on the relative density. However, when the sintering temperature was above 1340 °C, the Q×f value mainly relied on the grain morphology in addition to the density. The MgZrNb2O8 ceramic sintered at 1340 °C for 4 h exhibited excellent microwave dielectric of εr=26, Q×f=120,816 GHz (where f=6.85 GHz), and τf=?50.2 ppm/°C. These results demonstrate that MgZrNb2O8 could be a promising candidate material for the application of highly selective microwave ceramic resonators and filters.  相似文献   

17.
TiO2 added NiNb2O6 ceramics produced using a reaction-sintering process were investigated. Pure columbite NiNb2O6 could be obtained without TiO2 addition. With 30 and 40 mol% TiO2 addition, a phase with the same structure of Ni0.5Ti0.5NbO4 formed. Grain growth is easier in pellets with 30 and 40 mol% TiO2 addition than in the NiNb2O6 pellets. Microwave dielectric properties: ?r = 20.7, Q × f = 19,800 GHz (at 9 GHz) and τf = ?31.9 ppm/°C were obtained for NiNb2O6 pellets sintered at 1300 °C/2 h. ?r around 45, Q × f = 5400–7700 GHz (at 6 GHz) and τf  73 ppm/°C were obtained in pellets with 30 mol% TiO2 addition. ?r around 50, Q × f = 3800–5700 GHz (at 6 GHz) and τf  99 ppm/°C were obtained in pellets with 40 mol% TiO2 addition.  相似文献   

18.
Structure, sintering behavior and microwave dielectric properties of ceramics have been investigated by x-ray powder diffraction (XRD) and scanning electron microscopy (SEM) in this paper. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 6–11 GHz. The sintering temperature and microwave dielectric properties could be successfully tuned in a wide window simultaneously by adjusting the A–O bond characteristics. The sintering temperature of CaWO4 was successfully reduced from 1100 °C to about 950 °C by BiVO4 addition. Approximately 95%–96% theoretical density could be obtained after sintering at 950 °C for 2 h. All samples exhibit single Scheelite structure (I41/a) phase. The dielectric constant increased, whereas the Q×f value decreased, with the increase of x. The τf value changed from negative to positive with the increases of x. Combined excellent microwave dielectric properties with εr=22. 1, Q×f=16,730 GHz and τf=2.39 ppm/°C could be obtained after sintered at the 950 °C for 2 h for x=0.3 compositions.  相似文献   

19.
The sintering temperature of BaSm2Ti4O12 (BST) and BaNd2Ti5O14 (BNT) ceramics was approximately 1350 °C and decreased to 875 °C with the addition of BaCu(B2O5) (BCB) ceramic powder. The presence of the liquid phase was responsible for the decrease of the sintering temperature. The liquid phase is considered to have a composition similar to the BaO-deficient BCB. The bulk density and dielectric constant (ɛr) of the specimens increased and reached saturated value with increasing BCB content. The Q-value initially increased with the addition of BCB, but decreased considerably when a large amount of BCB was added, because of the presence of the liquid phase. Good microwave dielectric properties of Q × f = 4500 GHz, ɛr = 60 and τf = −30 ppm/°C were obtained for the 16.0 mol% BCB-added BST ceramics sintered at 875 °C for 2 h. Moreover, the BST and BNT ceramics containing BCB show good compatibility with silver metal.  相似文献   

20.
TiO2 bulk ceramics were fabricated by using both spark plasma sintering (SPS) and the conventional sintering method (CSM). Starting materials were ultra fine rutile powders (<50 nm) prepared via the sol–gel process. CSM achieved the relative sintering density of 99.2% at 1300 °C. The grain size of 1300 °C sintered specimen was 6.5 μm. However, the sintering temperature of SPS for the density of 99.1% was as low as 760 °C, where the grain size was only 300 nm. In order to re-oxidize the Ti3+ ions due to the reducing atmosphere of the SPS process and the high temperature of the CSM process, the prepared TiO2 specimens were annealed in an oxygen atmosphere. The dielectric constant (ɛr) and quality factor (Q × f) of SPS-TiO2 re-oxidized specimens in a microwave regime were 112.6 and 26,000, respectively. These properties were comparable to those of 1300 °C sintered CSM specimens (ɛr  101.3, Q × f  41,600). These microwave dielectric properties of nanocrystalline TiO2 specimens prepared using SPS were discussed in terms of grain size variation and Ti4+ reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号