首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cu2Se/InxSe(x≈1) double layers were prepared by sequentially evaporating In2Se3 and Cu2Se binary compounds at room temperature on glass or Mo-coated glass substrates and CuInSe2 films were formed by annealing them in a Se atmosphere at 550°C in the same vacuum chamber. The InxSe thickness was fixed at 1 μm and the Cu2Se thickness was varied from 0.2 to 0.5 μm. The CuInSe2 films were single phase and the compositions were Cu-rich when the Cu2Se thickness was above 0.35 μm. And then, a thin CuIn3Se5 layer was formed on the top of the CuInSe2 film by co-evaporating In2Se3 and Se at 550°C. When the thickness of CuIn3Se5 layer was about 150 nm, the CuInSe2 cell showed the active area efficiency of 5.4% with Voc=286 mV, Jsc=36 mA/cm2 and FF=0.52. As the CuIn3Se5 thickness increased further, the efficiency decreased.  相似文献   

2.
Gas phase selenization of vacuum deposited Cu and In thin films employing an elemental Se vapour source is demonstrated as an essential first step in the search for optimized process parameters for the formation of single phase CuInSe2 materials suitable for solar cell applications. The selenization was accomplished in Se vapour, derived from an elemental Se source, held at 240–260°C. This source was placed in a flow of nitrogen gas at 500 Torr to transport the Se vapour to the metal films. The selenization reaction readily occurs at Cu and In films kept at 340–400°C. Lower selenization temperatures invariably lead to the formation of Cu and In selenides with well defined crystalline microstructures. Hexagonal CuSe with an excess of Se in the matrix is the equilibrium growth phase, while the cubic Cu2−xSe phase evolves under conditions of excess Se flux. Selenization of the In films consistently led to the formation of the β-form of hexagonal In2Se3. At high selenization temperatures (400°C), while the β-form still emerges as the major component, traces of the α-form of In2Se3 are also detected. Detailed X-ray diffraction, electron probe analysis and microstructure data are presented.  相似文献   

3.
Sputtering technique for Cu–In precursor films fabrication using different Cu and In layer sequences have been widely investigated for CuInSe2 production. But the CuInSe2 films fabricated from these precursors using H2Se or Se vapour selenization mostly exhibited poor microstructural properties. The co-sputtering technique for producing Cu–In alloy films and selenization within a close-spaced graphite box resulting in quality CuInSe2 films was developed. All films were analysed using SEM, EDX, XRD and four-point probe measurements. Alloy films with a broad range of compositions were fabricated and XRD showed mainly In, CuIn2 and Cu11In9 phases which were found to vary in intensities as the composition changes. Different morphological properties were displayed as the alloy composition changes. The selenized CuInSe2 films exhibited different microstructural properties. Very In-rich films yielded the ODC compound with small crystal sizes whilst slightly In-rich or Cu-rich alloys yielded single phase CuInSe2 films with dense crystals and sizes of about 5 μm. Film resistivities varied from 10−2–108 Ω cm. The films had compositions with Cu/In of 0.40–2.3 and Se/(Cu+In) of 0.74–1.35. All CuInSe2 films with the exception of very Cu-rich ones contained high amount of Se (>50%).  相似文献   

4.
The efficiencies of Cu(In,Ga)Se2/CdS/ZnO solar cell devices in which the absorbers are produced by classical two-step processes are significantly lower that those in which co-evaporated absorbers are used. A significant problem related to two-step growth processes is the reported segregation of Ga towards the Mo back contact, resulting in separate CuInSe2 and CuGaSe2 phases. Furthermore, it is often reported that material losses (especially In and Ga) occur during high-temperature selenization of metallic precursors. In this study, X-ray fluorescence (XRF) analysis was used to study the diffusion behaviour of the chalcopyrite elements in single-stage and two-stage processed Cu(In,Ga)Se2 thin films. This relatively simple characterization technique proved to be very reliable in determining the degree of selenium incorporation, possible material losses and the in-depth compositional uniformity of samples at different stages of processing. This information is especially important in the case of two-stage growth processes, involving high-temperature selenization steps of metallic precursors. Device quality Cu(In,Ga)Se2 thin films were prepared by a relatively simple and reproducible two-step growth process in which all the metals were evaporated from one single crucible in a selenium-containing environment. The precursors were finally treated in an H2Se/Ar atmosphere to produce fully reacted films. XRF measurement indicated no loss of In or Ga during this final selenization step, but a significant degree of element diffusion which depended on the reaction temperature. It was also possible to produce Cu(In,Ga)Se2 thin films with an appreciable amount of Ga in the near-surface region without separated CuInSe2 and CuGaSe2 phases.  相似文献   

5.
The composition and the microstructure evolutions of CuInSe2 thin films under single-bath electrodeposition processes were investigated. It was found that the film composition was mainly determined by the [Se4+]/[Cu2+] ratios in solution, but the film microstructure is strongly dependent on the initial concentrations of Se4+, Cu2+, and In3+ precursors. Higher initial concentrations of Cu2+ and In3+ in solution are beneficial for the fabrication of compact CuInSe2 thin films with highly crystallized and large grain sized chalcopyrite phase. The microstructure evolution suggests that prior adsorption and reduction of Cu2+ ions and the formation of Cu2Se compound on the substrate can promote the nucleation, growth, and coarsening of CuInSe2 crystal to form a high quality thin film during the electrodeposition processes.  相似文献   

6.
Cu(In,Ga)(S,Se)2 thin films with high Ga/III ratio (around 0.8) were prepared by sequential evaporation from CuGaSe2, CuInSe2, In2Se3 and Ga2Se3 compounds and then annealing in H2S gas atmosphere. The annealing temperature was varied from 400 to 500 °C. These samples were characterized by means of XRF, EPMA, XRD and SEM. The S/(S+Se) mole ratio in the thin films increased with increase in the annealing temperature, keeping the Cu, In and Ga contents nearly constant. The open circuit voltage increased and the short circuit current density decreased with increase in the annealing temperature. The best solar cell using Cu(In,Ga)(S,Se)2 thin film with Ga/(In+Ga)=0.79 and S/(S+Se)=0.11 annealed at 400 °C demonstrated Voc=535 mV, Isc=13.3 mA/cm2, FF=0.61 and efficiency=4.34% without AR-coating.  相似文献   

7.
In this article, we present results of a detailed real-time X-ray diffraction (XRD) study on the formation of CuInSe2 from electroplated precursors. The solid-state reactions observed during the selenisation of three different types of precursors are presented. The first type of precursors (I) consists of the nanocrystalline phases Cu2−xSe and InSe at room temperature, which react to CuInSe2 starting at 470 K. The second type of precursor (II) shows an inhibited CuInSe2 formation out of the initial phases Cu2−xSe and γ-In2Se3 starting at 400 K. The third precursor type (III) shows completely different selenisation behaviour. Starting from the intermetallic compound Cu11In9 and amorphous selenium, the formation of the binary selenides In4Se3 and CuSe is observed after the melting point of selenium at 494 K. After selenium transfer reactions, the compound semiconductor CuInSe2 is formed out of Cu2−xSe and InSe. This type (III) reaction path is well known for the selenisation of SEL precursors (stacked elemental layers of sputtered copper and indium and thermally evaporated selenium).  相似文献   

8.
Surface sulfurization of Cu(In,Ga)Se2 (CIGS) thin films was carried out using two alternative techniques that do not utilize toxic H2S gas; a sequential evaporation of In2S3 after CIGS deposition and the annealing of CIGS thin films in sulfur vapor. A Cu(In,Ga) (S,Se)2 thin layer was grown on the surface of the CIGS thin film after sulfurization using In2S3, whereas this layer was not observed for CIGS thin films after sulfurization using sulfur vapor, although a trace quantity of S was confirmed by AES analysis. In spite of the difference in the surface modification techniques, the cell performance and process yield of the ZnO:Al/CdS/CIGS/Mo/glass thin-film solar cells were remarkably improved by using both surface sulfurization techniques.  相似文献   

9.
Stacked thin films composed of In2(Se,S)3 and CuIn(Se,S)2 layers were grown on a fluorine-doped tin oxide (FTO)-coated glass substrate using electrodeposition of the corresponding selenide (In2Se3 and CuInSe2) precursors followed by annealing in H2S flow (5% in Ar). Structural characterizations of both layers revealed that the resulting film quality strongly depended on annealing conditions of both CuIn(Se,S)2 and In2(Se,S)3 layers: a compact and uniform film was obtained by annealing both layers at 400 °C. Performance of Au/CuIn(Se,S)2/In2(Se,S)3/FTO superstrate-type solar cells also followed these structural characteristics, i.e., a preliminary conversion efficiency of 2.9% was obtained on the device based on 400 °C-annealed In2(Se,S)3 and CuIn(Se,S)2 layers.  相似文献   

10.
CuInSe2 and CuIn3Se5 films were grown by stepwise flash evaporation onto glass and Si substrates held at different temperatures. Transmission electron microscopy (TEM) studies revealed that the films grown above 370 K were polycrystalline, with CuInSe2 films exhibiting larger average grain size than CuIn3Se5. Optical absorption studies yielded band gaps of 0.97±0.02 and 1.26±0.02 eV for CuInSe2 and CuIn3Se5, respectively. Rutherford backscattering spectrometry (RBS) study of the films on Si showed that CuInSe2/Si structures included an inhomogeneous interface region consisting of Cu and Si, whereas CuIn3Se5/Si structures presented sharp interface.  相似文献   

11.
Thin films of Cu–In–Ga–Se alloy system with various composition were prepared by thermal crystallization from In/CuInGaSe/In precursor. Electron probe microanalysis and X-ray diffraction study revealed that these samples were assigned to chalcopyrite Cu(In,Ga)Se2 or ordered vacancy compound Cu(In,Ga)2Se3.5. Solar cell with ZnO:Al/i–ZnO/CdS/Cu(In,Ga)Se2/Mo/soda-lime glass substrate structure was fabricated by using thermal crystallization technique, and demonstrated a 9.58% efficiency without AR-coating.  相似文献   

12.
CuInSe2 thin films were formed from the selenization of co-sputtered Cu–In alloy layers. These layers consisted of only two phases, CuIn2 and Cu11In9, over broad Cu–In composition ratio. The concentration of Cu11In9 phase increased by varying the composition from In-rich to Cu-rich. The composition of co-sputtered Cu–In alloy layers was linearly dependent on the sputtering power of Cu and In targets. The metallic layers were selenized either at a low pressure of 10 mTorr or at 1 atm Ar. A small number of Cu–Se and In–Se compounds were observed during the early stage of selenization and single-phase CuInSe2 was more easily formed in vacuum than at 1 atm Ar. Therefore, CuInSe2 films selenized in vacuum showed smoother surface and denser microstructure than those selenized at 1 atm. The results showed that CuInSe2 films selenized in vacuum had good properties suitable for a solar cell.  相似文献   

13.
Semiconducting Cu(In,Ga)(Se,S)2 thin films were made from electrodeposited Cu(In,Ga)Se2 precursors, followed by physical vapor deposition of In2S3, Ga, and Se. The bandgaps of these materials were found to be between 1.6 and 2.0 eV, which spans the optimal bandgap necessary for application for the top junction in photovoltaic multijunction devices and for unassisted water photolysis. These films were characterized by electron-probe microanalysis, scanning Auger spectroscopy, X-ray diffraction, and photocurrent spectroscopy.  相似文献   

14.
The alternative buffer layer material Inx(OH,S)y was deposited on Cu(In,Ga)Se2 (CIGS) thin films by chemical-bath-deposition (CBD). The impurities in Inx(OH,S)y buffer layers and their atomic concentration were characterized by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses. In addition, AES was used to depth profile the samples. The band-gap energy of the deposited Inx(OH,S)y was determined from optical absorption data. Both the dark- and photo-current-voltage (IV) characteristics of the CIGS solar cells with Inx(OH,S)y buffer layers were measured, and the results were compared to the CIGS cells deposited with CBD CdS buffer layers.  相似文献   

15.
We present results from real-time X-ray diffraction experiments on the formation of CuInSe2 solar cell absorbers by annealing precursors, produced by simultaneous electrodeposition of copper, indium and selenium. The investigations reveal, that a reduced amount of electrochemically deposited selenium is the decisive parameter in order to realise a chalcopyrite formation behaviour as observed for sputtered stacked elemental layer (SEL) precursors. A simultaneous electrodeposition of the elements copper, indium and selenium in the molar ratio 1:1:2 of the chalcopyrite CuInSe2 leads to the formation of binary copper and indium selenides during the electrodeposition process. The existence of binary selenides besides the intermetallic phase Cu11In9 as initial phases leads to an unfavourable absorber morphology. This can be explained by the observed semiconductor formation mechanism. A reduction of the deposited amount of selenium favours the formation of the intermetallic compound Cu11In9 and reduces the amount of binary selenides. These precursors show a formation behaviour and resulting absorber morphology as known for sputtered SEL precursors.  相似文献   

16.
CuInSe2 and CuIn3Se5 thin films have been deposited using sodium compounds such as Na2Se and Na2S onto Corning 7059 glass substrates by the two-stage co-evaporation method. Enhanced grain growth and preferred (1 1 2) grain orientation as well as a decrease in resistivity with respect to undoped films were observed with sodium incorporation. A clear correlation between the photoluminescence spectra and the resistivity of the films was found by comparing the properties of films with and without Na incorporation. These observations suggest that compensation is reduced due to the suppression of donor-type defects by the presence of Na.  相似文献   

17.
We have investigated the electrochemical deposition of modulated thin films based on the CuxIn2−xSe2 system. CuInSe2 is a leading alternative to silicon for use in thin film photovoltaic solar cells due to its optical absorption and electrical characteristics. Alternating layers of two different compositions based on the CuxIn2−xSe2 system were potentiostatically deposited. These nanometer-scale layers are used to form reduced-dimensionality structures such as superlattices that can be used in concentrator solar cells. We have used X-ray diffraction, energy-dispersive spectroscopy, and scanning tunneling microscopy to characterize our asdeposited thin films. The ability of the scanning tunneling microscope to resolve the individual nanoscale layers of our multilayered thin films is shown and is used to determine modulation wavelengths.  相似文献   

18.
The effects of sodium on off-stoichiometric Cu(In,Ga)Se2 (CIGS)-based thin films and solar cells were investigated. The CIGS-based films were deposited with intentionally incorporated Na2Se on Mo-coated SiOx/soda-lime glass substrates by a multi-step process. By sodium control technique high-efficiency ZnO : Al/CdS/CIGS solar cells with efficiencies of 10–13.5% range were obtained over an extremely wide Cu/(In + Ga) ratio range of 0.51–0.96, which has great merit for the large-area manufacturing process. The improved efficiency in the off-stoichiometric regions is mainly attributed to the increased acceptor concentration and the formation of the Cu(In,Ga)3Se5 phase films with p-type conductvity. A new type of solar cell with p-type Cu(In,Ga)3Se5 phase absorber materials is also suggested.  相似文献   

19.
A set of In2Se3 films was grown on (1 1 1) Si substrate with AlN buffer by metalorganic chemical vapor deposition (MOCVD) using H2Se as the metalogramic precursors for Se. The In2Se3 films on (1 1 1) Si substrate were pinhole-free with homogeneous and lamellar structures. It was found that by properly controlling the substrate temperatures, single-phase γ-In2Se3 films with fairly good optical properties can be well fabricated. Photoluminescence spectra of single-phase γ-In2Se3 show exciton emissions at 2.140 eV at 10 K. The band gap of single-phase γ-In2Se3 at room temperature is estimated at 1.943 eV.  相似文献   

20.
Thin films based on CuInSe2 have become very successful as absorber layers for solar cells. It is only in the recent past that gallium (Ga) and sulfur (S) were incorporated into CuInSe2 in order to increase the energy band gap of the film to an optimum value with the ultimate aim of producing more efficient devices. This paper focuses on the incorporation of S into partly selenized CuInSe2 films in order to produce CuIn(Se,S)2 films with varying S/Se+S ratios, resulting in different band-gap energies. This was achieved by varying the conditions when selenizing Cu/In alloys in H2Se/Ar, and then exposing these various partly selenized films to H2S/Ar under identical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号