首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(6):6761-6769
Deposition of high-k HfO2 gate dielectric films on n-type Si and quartz substrates by sol–gel spin-on coating technique has been performed and the structural, optical and electrical characteristics as a function of annealing temperature have been investigated. The structural and optical properties of HfO2 thin films related to annealing temperature are investigated by X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–vis), and spectroscopic ellipsometry (SE). Results indicate that the monoclinic form of HfO2 appears when temperature rises through and above 500 °C. The reduction in band gap is observed with the increase of annealing temperature. Moreover, the increase of refractive index (n) and density and the decrease of the extinction coefficient with the increase of annealing temperature are obtained by SE measurements. Additionally, the electrical properties based on Al/Si/HfO2/Al capacitor are analyzed by means of the high frequency capacitance–voltage (CV) and the leakage current density–voltage (JV) characteristics. And the leakage current conduction mechanisms as functions of annealing temperatures are also discussed.  相似文献   

2.
Thin films with the composition 70 mol% Na0.5Bi0.5TiO3 + 30 mol% NaTaO3 were prepared by sol–gel synthesis and spin coating. The influence of the annealing temperature on the microstructural development and its further influence on the dielectric properties in the low‐ (kHz–MHz) and microwave‐frequency (15 GHz) ranges were investigated. In the low‐frequency range we observed that with an increasing annealing temperature from 550°C to 650°C the average grain size increased from 90 to 170 nm, which led to an increase in the dielectric permittivity from 130 to 240. The temperature‐stable dielectric properties were measured for thin films annealed at 650°C in the temperature range between ?25°C and 150°C. The thin films deposited on corundum substrates had a lower average grain size than those on Si/SiO2/TiO2/Pt substrates. The highest average grain size of 130 nm was obtained for a thin film annealed at 600°C, which displayed a dielectric permittivity of 130, measured at 15 GHz.  相似文献   

3.
《Ceramics International》2017,43(3):3101-3106
Deposition of HfAlOx gate dielectric films on n-type Si and quartz substrates by sol-gel technique has been performed and the optical, electrical characteristics of the as-deposited HfAlOx thin films as a function of annealing temperature have been investigated. The optical properties of HfAlOx thin films related to annealing temperature are investigated by ultraviolet-visible spectroscopy (UV–vis) and spectroscopy ellipsometry (SE). By measurement of UV–vis, average transmission of all the HfAlOx samples are about 85% owing to their uniform composition. And the increase in band gap has been observed with the increase of annealing temperature. Moreover, the increase of refractive index (n) and density with the increase of annealing temperature are obtained by SE measurements. Additionally, the electrical properties based on Al/Si/HfAlOx/Al capacitor are analyzed by means of the high frequency capacitance-voltage (C-V) and the leakage current density-voltage (J-V) characteristics. Results have shown that 400 °C-annealed sample demonstrates good electrical performance, including larger dielectric constant of 12.93 and lower leakage current density of 3.75×10−7 A/cm2 at the gate voltage of 1 V. Additionally, the leakage current conduction mechanisms as functions of annealing temperatures are also discussed systematically.  相似文献   

4.
High-k oxide dielectric films have attracted intense interest for thin-film transistors (TFTs). However, high-quality oxide dielectrics were traditionally prepared by vacuum routes. Here, amorphous high-k alumina (Al2O3) thin films were prepared by the simple sol-gel spin-coating and post-annealing process. The microstructure and dielectric properties of Al2O3 dielectric films were systematically investigated. All the Al2O3 thin films annealed at 300–600?°C are in amorphous state with ultrasmooth surface (RMS ~ 0.2?nm) and high transparency (above 95%) in the visible range. The leakage current of Al2O3 films gradually decreases with the increase of annealing temperature. Al2O3 thin films annealed at 600?°C showed the low leakage current density down to 3.9?×?10?7 A/cm2 at 3?MV/cm. With the increase of annealing temperature, the capacitance first decreases then increases to 101.1?nF/cm2 (at 600?°C). The obtained k values of Al2O3 films are up to 8.2. The achieved dielectric properties of Al2O3 thin films are highly comparable with that by vapor and solution methods. Moreover, the fully solution-processed InZnO TFTs with Al2O3 dielectric layer exhibit high mobility of 7.23?cm2 V?1 s?1 at the low operating voltage of 3?V, which is much superior to that on SiO2 dielectrics with mobility of 1.22?cm2/V?1 s?1 at the operating voltage of 40?V. These results demonstrate that solution-processed Al2O3 thin films are promising for low-power and high-performance oxide devices.  相似文献   

5.
Si–O–C‐based amorphous or nanostructured materials are now relatively common and of interest for numerous electronic, optical, thermal, mechanical, nuclear, and biomedical applications. Using plasma‐enhanced chemical vapor deposition (PECVD), hydrogen atoms are incorporated into the system to form SiOCH dielectric films with very low dielectric constants (k). While these low‐k dielectrics exhibit chemical stability as deposited, they tend to lose hydrogen and carbon (as labile organic groups) and convert to SiO2 during thermal annealing and other fabrication processes. Therefore, knowledge of their thermodynamic properties is essential for understanding the conditions under which they can be stable. High‐temperature oxidative drop solution calorimetry measurement in molten sodium molybdate solvent at 800°C showed that these materials possess negative formation enthalpies from their crystalline constituents (SiC, SiO2, C, Si) and H2. The formation enthalpies at room temperature become less exothermic with increasing carbon content and more exothermic with increasing hydrogen content. Fourier transform infrared spectroscopy (FTIR) spectroscopy examined the structure from a microscopic perspective. Different from polymer‐derived ceramics with similar composition, these low‐k dielectrics are mainly comprised of Si–O(C)–Si networks, and the primary configuration of carbon is methyl groups. The thermodynamic data, together with the structural analysis suggest that the conversion of sp2 carbon in the matrix to surface organic functional groups by incorporating hydrogen increases thermodynamic stability. However, the energetic stabilization by hydrogen incorporation is not enough to offset the large entropy gain upon hydrogen release, so hydrogen loss during processing at higher temperatures must be managed by kinetic rather than thermodynamic strategies.  相似文献   

6.
Spin-coating was performed to fabricate amorphous high-entropy oxide (HEO) (AlTiVZrHf)Ox films on Si substrates. The films were evaluated through X-ray photoelectron spectroscopy and through transmission electron microscopy (TEM)-based energy-dispersive spectroscopy (EDS) mapping, which respectively revealed all constituent elements and the homogenous distributions and no aggregation of those elements. TEM analysis revealed four distinct layers—a crystalline Al metal gate, an amorphous Al2O3 interfacial layer, amorphous (AlTiVZrHf)Ox, and native amorphous SiO2—in a patterned metal–oxide–semiconductor (MOS) gate stack on the Si substrate. The resulting stack exhibited a low leakage current density (JL) and no frequency dispersion in its capacitance–voltage characteristics after undergoing forming gas annealing. The obtained dielectric constant (k ≈ 32) for the HEO film is promising for advanced gate stacks and transistor applications. Although the film exhibited minor nanocrystallinity and the stack exhibited no interfacial Al2O3 layer after rapid thermal annealing at 900 °C, a low JL, distinct layers, and a clearly defined interface between the (AlTiVZrHf)Ox and SiO2 were observed, indicating no substantial diffusion among these layers. EDS mapping revealed the homogenous distribution of each constituent element without aggregation. Medium-entropy-oxide films and their MOS devices were fabricated for comparison; however, they exhibited inferior performance.  相似文献   

7.
《Ceramics International》2022,48(11):15371-15379
Zinc oxy-nitride (ZnON) is an emerging semiconductor having tunable energy bandgap (Eg) and refractive index (n). Herein, the effect of annealing temperature on ZnON films synthesized on glass substrates at different (50, 100 and 150 sccm) nitrogen gas flow rates (NGFR) by simple powder vapor transport (PVT) technique is studied. All the synthesized ZnON films are annealed at 300 °C for 60 min. The unannealed and annealed ZnON (Un-&-An-ZnON) films are characterized by XRD, SEM, Raman and UV spectroscopies. XRD analysis confirms the formation of polycrystalline ZnN films and no diffraction plane related to oxide phase. The crystallinity of Un-ZnN films is increased after annealing, however, it is maximum for 100 sccm NGFR. Raman analysis indicates the presence of vibrational modes related to ZnN and ZnO phases, thereby confirming the formation of ZnON films. After annealing, the surface morphologies of Un-ZnON films is transformed from nano-sheets/nano-blocks to rounded nanoparticles. The change in structural and morphological features of ZnON films, associated with annealing temperature causes to create stresses and defects and hence Eg and n. The values of n (1.85–1.87) and Eg (2.6–2.7 eV) of Un-ZnON films are increased to (1.98–2.62) and (3.16–3.25 eV), after annealing, respectively. These inexpensive but high quality ZnON films can be used for semiconducting and optoelectronic devices.  相似文献   

8.
The Bi1.5MgNb1.5O7 (BMN) thin films were prepared on Au-coated Si substrates by rf magnetron sputtering. We systematically investigated the structure, dielectric properties and voltage tunable property of the films with different annealing temperatures. The relationships of leakage current and breakdown bias field with annealing temperature were firstly studied and a possible explanation was proposed. The deposited BMN thin films had a cubic pyrochlore phase when annealed at 550 °C or higher. With the increasing of annealing temperature, the dielectric constant and tunability also went up. BMN thin films annealed at 750 °C exhibited moderate dielectric constant of 106 and low dielectric loss of 0.003–0.007 between 10 kHz and 10 MHz. The maximum tunability of 50% was achieved at a bias field of 2 MV/cm. However, thin films annealed at 750 °C had lower breakdown bias field and higher leakage current density than films annealed below 750 °C. The excellent physical and electrical properties make BMN thin films promising for potential tunable capacitor applications.  相似文献   

9.
(K0.5Na0.5)NbO3 (KNN) thin films have been deposited onto Pt/Ti/SiO2/Si and quartz substrates by RF magnetron sputtering. The films were deposited at 400°C with the variation in oxygen mixing percentage (OMP) ratio from 0% to 100% and annealed at 700°C in oxygen atmosphere. The crystallinity of the films is found to be increased with increased OMP. Dielectric properties of the films were examined over the frequency range from 1 kHz to 1 MHz and the temperature range of 30°C to 400°C. The Curie temperature of the films was found to be in the range 369°C–373°C. For the first time, the split postdielectric resonator (SPDR) method was used to measure the microwave (10–20 GHz) dielectric properties of KNN thin films. The optical properties of as‐deposited and annealed KNN thin films were investigated by means of transmittance spectra. The optical bandgap is calculated by using the Tauc relation, and found to be in the range 4.34–4.40 eV and 4.29–4.37 eV for the as‐deposited and annealed films, respectively. The refractive index (n700nm) of the films found to be in the range 1.98–2.01 and 1.99–2.07 for as‐deposited and annealed films, respectively. The refractive index dispersion is analyzed by using Wemple–DiDomenico (W–D) single‐oscillator model. The effect of annealing and OMP on the refractive index, packing density and W–D parameters has been investigated. The average single oscillator energy (Eo) and dispersion energies (Ed) of the annealed KNN thin films are in the range of 6.17–7.16 eV and 18.77–22.19 eV, respectively. AC‐conductivity of the annealed films was analyzed by using double power law. Ag/KNN/Pt thin films followed the ohmic conduction (J ∝ Eα, where α ~1) and the low leakage current density obtained for the deposited at 100% O2 is 3.14 × 10?5 A/cm2 at 50 kV/cm.  相似文献   

10.
《Ceramics International》2016,42(10):12210-12214
The effects of annealing temperature on the structure, morphology, ferroelectric and dielectric properties of Na0.5Bi0.5Ti0.99W0.01O3+δ (NBTW) thin films are reported in detail. The films are deposited on indium tin oxide/glass substrates by a sol-gel method and the annealing temperature adopted is in the range of 560–620 °C. All the films can be well crystallized into phase-pure perovskite structures and show smooth surfaces without any cracks. Particularly, the NBTW thin film annealed at 600 °C exhibits a relatively large remanent polarization (Pr) of 20 μC/cm2 measured at 750 kV/cm. Additionally, it shows a high dielectric constant of 608 and a low dielectric loss of 0.094 as well as a large dielectric tunability of 62%, making NBTW thin film ideal in the room-temperature tunable device applications.  相似文献   

11.
《Ceramics International》2022,48(24):36441-36449
Reducing the self-heating of SiC- and GaN/SiC-based high-powered devices by integrating diamond films offers promising performance enhancement of these devices. However, such a reduction strategy faces serious problems, such as diamond nucleation on SiC and stress accumulation greater than 10 GPa. In this work, a SiNx dielectric layer (~50 nm) was coated onto the C polar face of a 4H–SiC wafer using microwave plasma chemical vapor deposition (MPCVD) to improve direct dense diamond nucleation and growth, significantly reduce the stress, and build Si–C(SiC)?Si?C(diamond) bond bridges. This SiNx thin layer, prepared by activating Si ions under Ar/N plasma during magnetron sputtering, gave rise to local Si3N4 crystal features and a low effective work function (EWF) for promoting surface dipoles with electronegative carbon-containing groups. In the H plasma environment during diamond growth, the local Si3N4 crystal was amorphized, and the N atoms escaped as a result of atomic H and the high temperature. At the same time, C atoms diffused into the SiNx and formed C–Si bonds (49.7% of the total C bonds) by replacing N–Si and Si–Si, thus increasing the direct nucleation density of the diamond grains. The diamond thin film grew rapidly and uniformly, with a grain size of approximately 2 μm in mixed orientation, and the stress of the 2-inch SiC-on-diamond wafer was extremely low (to ~0.1–0.2 GPa). In comparison, partially connected diamond grains (>10 μm) on the bare SiC in the preferential (110) orientation resulted in a film with twin-grain features and significant stress, which was associated with the hexagonal lattice interface of 4H–SiC. These results are considered the material and surface/interface bases for actively controlling wafer fabrication and enhancing the heat dissipation of SiC and GaN/SiC electronics.  相似文献   

12.
《Ceramics International》2017,43(8):5901-5906
0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (0.65PMN-0.35PT) thin films were deposited on Pt/Ti/SiO2/Si substrates annealed from 550 to 700 °C using sol-gel process. The effects of annealing temperature on microstructure, insulating, ferroelectric and dielectric properties were characterized. The result reveals that 0.65PMN-0.35PT thin films possess a polycrystalline structure, matching well with the perovskite phase despite the existence of a slight pyrochlore phase. The film samples annealed at all temperatures exhibit relatively dense surfaces without any large voids and the grain size increases generally with the increase of the annealing temperature. Meanwhile, pyrochlore phase is considerably generated because of the deformation of perovskite phase caused by volatilization of Pb at an excessive high-temperature. The film annealed at 650 °C exhibits superior ferroelectricity with a remanent polarization (Pr) value of 13.31 μC/cm2, dielectric constant (εr) of 1692 and relatively low dielectric loss (tanδ) of 0.122 at 104 Hz due to the relatively homogeneous large grain size of 130 nm and low leakage current of approximately 10-6 A/cm2.  相似文献   

13.
The shrinkage of the devices and wiring dimensions in the ULSI chips is associated with an increased resistance of the interconnect metallization and increased interlevel and intralevel capacitances, causing corresponding longer signal delays. Low dielectric constant (k) insulators, with k significantly lower than that of presently used SiO2 are needed for reducing these capacitances and improving the switching performances of future ULSI circuits. Integration of low-k insulators in the ULSI circuits will also reduce the power required to operate them. Diamond-like carbon (DLC) has found a variety of applications based on its attractive mechanical, tribological, optical and chemical resistance properties. The films are also dielectrics whose electrical resistivities can reach values of 1016 Ω-cm at low fields. The DLC-type materials are attractive dielectrics because of their isotropic properties and the ability to deposit them by plasma assisted CVD techniques. However, the amorphous carbon materials with diamond-like properties are characterized by dielectric constants that are not lower than that of SiO2 (k=4). It was found that, by adjusting the deposition conditions of plasma deposited hydrogenated DLC (a-C:H), it is possible to reduce its dielectric constant to values between >3.3 and 2.7. Incorporation of the low-k materials in the ULSI structures imposes a significant number of requirements that they have to satisfy, among them stability at the processing temperature of 400°C. While DLC films having dielectric constants k>3.3 appeared to be stable to anneals of 4 h at 400°C in inert ambiance, the thermal stability decreased with decreasing dielectric constant. Incorporation of fluorine in FDLC films produces a material of apparently higher thermal stability and further reduced dielectric constants, to values even lower then 2.4. The as-deposited low-k DLC or FDLC films may be thermally stabilized, in terms of dimensional stability and material loss, by an initial anneal, that also causes a significant reduction in the intrinsic film stress, typical of DLC type materials. The integration of the low-k films in the interconnect structures further requires good adhesion with thermally stable interfaces to materials in contact with the low-k dielectric. Such materials may include processing aids and structural components such as silicon nitride or oxide, and wire cladding metallurgy. The paper discusses the preparation and characterization of the low-k DLC and FDLC films, approaches for their thermal stabilization and evaluation of integration issues.  相似文献   

14.
Diamond like carbon (DLC) thin films were deposited on p-type silicon (p-Si), quartz and ITO substrates by microwave (MW) surface-wave plasma (SWP) chemical vapor deposition (CVD) at different substrate temperatures (RT ∼ 300 °C). Argon (Ar: 200 sccm) was used as carrier gas while acetylene (C2H2: 20 sccm) and nitrogen (N: 5 sccm) were used as plasma source. Analytical methods such as X-ray photoelectron spectroscopy (XPS), FT-IR and UV–visible spectroscopy were employed to investigate the structural and optical properties of the DLC thin films respectively. FT-IR spectra show the structural modification of the DLC thin films with substrate temperatures showing the distinct peak around 3350 cm 1 wave number; which may corresponds to the sp2 C–H bond. Tauc optical gap and film thickness both decreased with increasing substrate temperature. The peaks of XPS core level C 1 s spectra of the DLC thin films shifted towards lower binding energy with substrate temperature. We also got the small photoconductivity action of the film deposited at 300 °C on ITO substrate.  相似文献   

15.
La0.6Sr0.4Co0.8Fe0.2O3 – δ (LSCF) has been sputtered on bare Si and Si3N4 and yttria‐stabilised zirconia (YSZ) thin films to investigate annealing temperature‐ and thickness‐dependent microstructure and functional properties, as well as their implications for designing failure‐resistant micro‐solid oxide fuel cell (μSOFC) membranes. The LSCF thin films crystallise in the 400–450 °C range; however, after annealing in the 600–700 °C range, cracks are observed. The formation of cracks is also thickness‐dependent. High electrical conductivity, ∼520 Scm–1 at 600 °C, and low activation energy, ∼0.13 eV, in the 400–600 °C range, are still maintained for LSCF films as thin as 27 nm. Based on these studies, a strong correlation between microstructure and electrical conductivity has been observed and an annealing temperature‐thickness design space that is complementary to temperature‐stress design space has been proposed for designing reliable membranes using sputtered LSCF thin films. Microfabrication approaches that maintain the highest possible surface and interface quality of heterostructured membranes have been carefully examined. By taking advantage of the microstructure, microfabrication and geometrical structural considerations, we were able to successfully fabricate large‐area, self‐supported membranes. These results are also relevant to conventional or grid‐supported SOFC membranes using ultrathin nanocrystalline cathodes and μSOFCs using cathode thin films other than LSCF.  相似文献   

16.
The ultrahigh relative dielectric constant (K′) values reported for the CaCu3Ti4O12 bulk ceramics (104 at RT) joined to their low thermal dependence, no phase transitions are expected between −173 and 330 °C, make this material very promising for capacitor applications and certainly for microelectronics. The interest in the preparation of this material in thin film form is twofold, the understanding of its physical properties and the integration of this high K′ oxide with the Si technology. In this work, the preparation of CCTO thin films onto Pt/TiO2/SiO2/Si(1 0 0) substrates is attempted using sol–gel processing and rapid thermal processing (RTP) at 650 °C. Structural, microstructural and dielectric characterization of the films is performed. The results are commented and discussed on the light of the grain boundary effect on the dielectric constant and the possibility of application of these thin films in microelectronic devices.  相似文献   

17.
The effects of deposition temperature on orientation, surface morphology and dielectric properties of the thin films for Ba0.6Sr0.4TiO3 thin films deposited on Pt/Ti/SiO2/Si substrates by pulsed laser deposition were investigated. X-ray diffraction patterns revealed a (2 1 0) preferred orientation for all the films. With rising substrate temperature from 650 °C to 700 °C, the crystallinity and crystal grain size of the films increase, the relative dielectric constant increases, but the dielectric losses have not obvious difference. The film deposited at 350 °C and annealed at 700 °C has strongly improved roughness and dielectric permittivity compared with the film only deposited directly at 700 °C. Three distinct relaxation processes within tan(δ) were found for the BaxSr1?xTiO3 film: a broadened process of the film relaxation, an intermediate peak which originates from Maxwell–Wagner–Sillars polarization, and an extremely slow process ascribed to leak current. The complex dielectric permittivity and loss can be fitted by an improved Cole–Cole model corresponding to a stretched relaxation function.  相似文献   

18.
The present work evaluates the effects of plasma power and oxygen mixing ratios (OMRs) on structural, morphological, optical, and electrical properties of strontium titanate SrTiOx (STO) thin films. STO thin films were grown by magnetron sputtering, and later thermal annealing at 700°C for 1 h was applied to improve film properties. X-ray diffraction analysis indicated that as-deposited films have amorphous microstructure independent of deposition conditions. The films deposited at higher OMR values and later annealed also showed amorphous structure while the films deposited at lower OMR value and annealed have nanocrystallinity. In addition, all as-deposited films were highly transparent (~80%–85%) in the visible spectrum and exhibited well-defined main absorption edge, while the annealing improved transparency (90%) within the same spectrum. The calculated direct and indirect optical band gaps for films were in the range of 3.60-4.30 eV as a function of deposition conditions. The refractive index of the films increased with OMRs and the postdeposition annealing. The frequency dependent capacitance measurements at 100 kHz were performed to obtain film dielectric constant values. High dielectric constant values reaching up to 100 were obtained. All STO samples exhibited more than 2.5 μC/cm2 charge storage capacity and low dielectric loss (less than 0.07 at 100 kHz). The leakage current density was relatively low (3 × 10−8Acm−2 at +0.8 V) indicating that STO films are promising for future dynamic random access memory applications.  相似文献   

19.
Titanium oxide thin films were deposited on p-type Si(100), SiO2/Si, and Pt/Si substrates by plasma enhanced chemical vapor deposition using high purity Ti(O-i-C3H7)4 and oxygen. As-deposited amorphous TiO2 thin films were treated by rapid thermal annealing (RTA) in oxygen ambient, and the effects of RTA conditions on the structural and electrical properties of TiO2 films were studied in terms of crystallinity, microstructure, current leakage, and dielectric constant. The dominant crystalline structures after 600 and 800 ‡C annealing were an anatase phase for the TiO2 film on SiO2/Si and a rutile phase for the film on a Pt/Si substrate. The dielectric constant of the as-grown and annealed TiO2 thin films increased depending on the substrate in the order of Si, SiO2/Si, and Pt/ Si. The SiO2 thin layer was effective in preventing the formation of titanium silicide at the interface and current leakage of the film. TEM photographs showed an additional growth of SiOx from oxygen supplied from both SiO2 and TiO2 films when the films were annealed at 1000 ‡C in an oxygen ambient. Intensity analysis of Raman peaks also indicated that optimizing the oxygen concentration and the annealing time is critical for growing a TiO2 film having high dielectric and low current leakage characteristics.  相似文献   

20.
A study of the stress relaxation caused by post-deposition thermal annealing of carbon nitride thin films (CNx) deposited onto Si substrates has been carried out. The intrinsic stress values were correlated with Fourier transform spectrometer (FTIR) and thermal desorption mass spectroscopy (TDMS) results. FTIR spectra showed the existence of N–Csp3, NCsp2 and C≡N triple bonds in the deposited films and indicates the occurrence of their porous character. The analysis of the spectra versus annealing temperature (TA) reveals two rearrangement mechanisms of the microstructure. Up to 200 °C, the reversion of NCsp2 to N–Csp3 and CCsp2 respectively, and then an increase of the connectivity of the C–C network for higher TA. These dissociation/recombination mechanisms are used to describe the stress release occurring within the (CNx) films upon heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号