首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetragonal ZrO2 polycrystalline (TZP) composites with 2 wt.% Al2O3 and co-stabilised with 1 mol% Y2O3 and (4, 6 or 8) mol% CeO2 were sintered at 1450 °C for 20 min in a single mode 2.45 GHz microwave furnace. For comparison, conventional sintering was performed in air at 1450 °C for 20 min. The starting powder mixture was obtained by a suspension coating technique using yttrium nitrate, cerium nitrate and pure m-ZrO2 nanopowder. Fully dense material grades were obtained by both sintering methods. The influence of the composition and the sintering methods on the final phase composition and microstructure were investigated by X-ray diffraction and scanning electron microscopy. Finer and more uniform microstructures were observed in the microwave sintered ceramics when compared to the conventionally sintered samples. The fracture toughness increases with decreasing stabiliser content, whereas a reverse relation was found for the Vickers hardness. Comparable toughness and hardness values were obtained for the microwave and conventionally sintered samples.  相似文献   

2.
《Ceramics International》2017,43(11):8525-8530
Commercial Y2O3 powder was used to fabricate Y2O3 ceramics sintered at 1600 °C and 1800 °C with concurrent addition of ZrO2 and La2O3 as sintering aids. One group with different contents of La2O3 (0–10 mol%) with a fixed amount of 1 mol% ZrO2 and another group with various contents of ZrO2 (0–7 mol%) with a fixed amount of 10 mol% La2O3 were compared to investigate the effects of co-doping on the microstructural and optical properties of Y2O3 ceramics. At low sintering temperature of 1600 °C, the sample single doped with 10 mol% La2O3 exhibits much denser microstructure with a few small intragranular pores while the samples with ZrO2 and La2O3 co-doping features a lot of large intergranular pores leading to lower density. When the sintering temperature increases to 1800 °C, samples using composite sintering aids exhibit finer microstructures and better optical properties than those of both ZrO2 and La2O3 single-doped samples. It was proved that the grain growth suppression caused by ZrO2 overwhelms the acceleration by La2O3. Meanwhile, 1 mol% ZrO2 acts as a very important inflection point with regard to the influence of additive concentration on the transmittance, pore structure and grain size. The highest in-line transmittance of Y2O3 ceramic (1.2 mm in thickness) with 3 mol% of ZrO2 and 10 mol% of La2O3 sintered at 1800 °C for 16 h is 81.9% at a wavelength of 1100 nm, with an average grain size of 11.2 µm.  相似文献   

3.
Commercial Y2O3 powder was used to fabricate highly transparent Y2O3 ceramics with the addition of ZrO2 via slip casting and vacuum sintering. The effects of ZrO2 addition on the transparency, grain size and lattice parameter of Y2O3 ceramics were studied. With addition of ZrO2 the transparency of Y2O3 ceramics increased markedly and the grain size of Y2O3 ceramics decreased markedly by cation diffusivity mechanism and the lattice parameter of Y2O3 ceramics slightly decreased. The highest transmittance (at wavelength 1100 nm) of the 5.0 mol% ZrO2–Y2O3 ceramic (1.0 mm thick) sintered at 1860 °C for 8 h reached 81.7%, very close to the theoretical value of Y2O3.  相似文献   

4.
The effect of Gd2O3-doping on the crystal structure, surface morphology and chemical composition of the Gd2O3–HfO2 system is reported. Gd2O3–HfO2 ceramics with variable composition were prepared by varying the Gd2O3 composition in the range of 0–38 mol% balanced HfO2. X-ray diffraction (XRD) analysis indicates that the Gd2O3 concentration influences the crystal structure of the Gd2O3–HfO2 ceramics. Pure HfO2 and Gd2O3 crystallize in monoclinic and body centered cubic structure, respectively. The Gd2O3–HfO2 ceramics exhibit mixed monoclinic and fluorite structure when the Gd2O3 concentration is varied from 4 to 12 mol%. At 20 mol% of Gd2O3, existence of only the fluorite phase was found. Increasing the Gd2O3 concentration to 38 mol% results in the formation of single-phase pyrochlore Gd2Hf2O7 (a = 5.258 Å).  相似文献   

5.
6.
Gd2O3 and Yb2O3 co-doped 3.5 mol% Y2O3–ZrO2 and conventional 3.5 mol% Y2O3–ZrO2 (YSZ) powders were synthesized by solid state reaction. The objective of this study was to improve the phase stability, mechanical properties and thermal insulation of YSZ. After heat treatment at 1500 °C for 10 h, 1 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (1Gd1Yb-YSZ) had higher resistance to destabilization of metastable tetragonal phase than YSZ. The hardness of 5 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (5Gd1Yb-YSZ) was higher than that of YSZ. Compared with YSZ, 1Gd1Yb-YSZ and 5Gd1Yb-YSZ exhibited lower thermal conductivity and shorter phonon mean free path. At 1300 °C, the thermal conductivity of 5Gd1Yb-YSZ was 1.23 W/m K, nearly 25% lower than that of YSZ (1.62 W/m K). Gd2O3 and Yb2O3 co-doped YSZ can be explored as a candidate material for thermal barrier coating applications.  相似文献   

7.
Nanostructured 13 wt% Al2O3–8 wt% Y2O3–ZrO2 (13AlYSZ) coatings were developed by atmospheric plasma spraying (APS). The phase structure and the morphology of the 13AlYSZ coatings were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). It was found that the as-sprayed coatings mainly consisted of tetragonal zirconia, with the Al element solid solution in ZrO2. Heat treatment at 1100 °C increased the average grain size of the ZrO2 phase from 61 to 120 nm and decreased the porosity from 23.8 to 18%. The addition of the nano-Al2O3 can effectively inhibit the grain growth of the zirconia phase. The mechanism on inhibiting the grain growth of nanostructured 8 wt% Y2O3–ZrO2 thermal barrier coatings has been discussed in detail.  相似文献   

8.
The effects of Mn3O4 addition and reductive atmosphere (N2:H2 = 97:3) annealing on the microstructure and phase stability of yttria stabilized zirconia (YSZ) ceramics during sintering at 1500 °C for 3 h in air and subsequent annealing in a reductive atmosphere were investigated. Mn3O4 added 6 mol% YSZ (6YSZ) and 10 mol% YSZ (10YSZ) ceramics were prepared via the conventional solid-state reaction processes. The X-ray diffraction results showed that a single cubic phase of ZrO2 was obtained in 1 mol% Mn3O4 added 6YSZ ceramic at a sintering temperature of 1500 °C for 3 h. A trace amount of monoclinic ZrO2 phases were observed for 1 mol% Mn3O4 added 6YSZ ceramics after annealing at 1300 °C for 60 cycles in a reductive atmosphere by transmission electron microscopy. Furthermore, a single cubic ZrO2 phase existed stably as Mn3O4 added 10YSZ ceramics was annealed at 1300 °C for 60 cycles in reductive atmosphere.  相似文献   

9.
《Ceramics International》2016,42(6):7360-7365
Y2O3 stabilized ZrO2 (YSZ) has been considered as the material of choice for thermal barrier coatings (TBCs), but it becomes unstable at high temperatures and its thermal conductivity needs to be further reduced. In this study, 1 mol% RE2O3 (RE=La, Nd, Gd, Yb) and 1 mol% Yb2O3 co-doped YSZ (1RE1Yb–YSZ) were fabricated to obtain improved phase stability and reduced thermal conductivity. For 1RE1Yb–YSZ ceramics, the phase stability of metastable tetragonal (t′) phase increased with decreasing RE3+ size, mainly attributable to the reduced driving force for t′ phase partitioning. The thermal conductivity of 1RE1Yb–YSZ was lower than that of YSZ, with the value decreasing with the increase of the RE3+ size mainly due to the increased elastic field in the lattice, but 1La1Yb–YSZ exhibited undesirably high thermal conductivity. By considering the comprehensive properties, 1Gd1Yb–YSZ ceramic could be a good potential material for TBC applications.  相似文献   

10.
The phase diagram of the Al2O3–ZrO2–La2O3 system was constructed in the temperature range 1250–2800 °C. The liquidus surface of the phase diagram reflects the preferentially eutectic interaction in the system. Three new ternary and two new binary eutectics were found. The minimum melting temperature is 1665 °C and it corresponds to the ternary eutectic LaAlO3 + T-ZrO2 +  La2O3·11Al2O3. The solidus surface projection and the schematic of the alloy crystallization path confirm the preferentially congruent character of phase interaction in the ternary system. The polythermal sections present the complete phase diagram of the Al2O3–ZrO2–La2O3 system. No ternary compounds or regions of remarkable solid solution were found in the components or binaries in this ternary system. The latter fact is the theoretical basis for creating new composite ceramics with favorable properties in the Al2O3–ZrO2–La2O3 system.  相似文献   

11.
The phase transformation of different polymorphs in zirconia is very important for the processing and mechanical properties of zirconia ceramics. This paper adopts thermodynamic model which is suitable for ceramic system to calculate the Gibbs free energy change of tetragonal and monoclinic phases in ZrO2–CaO binary system. The difference of the Gibbs free energy between tetragonal and monoclinic phases in ZrO2–CaO as a function of composition and temperature, namely t  m phase transformation driving force, is thermodynamically calculated from the binary systems. Furthermore, in 8.0 mol% CaO–ZrO2, the equilibrium temperature between tetragonal and monoclinic phases, T0, was obtained as 1270.3 K, and martensitic transformation starting temperature (Ms) for t  m transformation of this ceramic with a mean grain size of 2.0 mm was calculated as 805.9 K, which is good agreement with experiment one of 793 K with 12.9 K residual.  相似文献   

12.
13.
Solidification of eutectic melts in multiple oxide systems can produce directionally solidified eutectic composites by slow cooling, while rapid cooling would give the formation of amorphous phases as super cooled liquids. We have successfully fabricated an amorphous bulk ceramics in the ternary system HfO2–Al2O3–GdAlO3 for the first time. It has the near eutectic composition of HfO2 (14 mol%), Al2O3 (63 mol%) and Gd2O3 (23 mol%) and highly transparent, >85%, in the visible region after the cooling of around 200–500 K/s for 2–5 mm Ø globules. The sample had kept amorphous up to 1073 K but crystallized above 1273 K then lost the transparency. The formation of an amorphous phase could be discussed by the equilibrated temperature (T0) lines in meta-stable phase diagram. The present study suggests possible formation of transparent bulk ceramics by the melt-solidification of eutectic melts in various ternary or multiple phase systems.  相似文献   

14.
A series of Zr1-xNd xO2-x/2 (0  x  1) ceramics was prepared by solid-state reaction method. The effects of Nd content on the phase evolution were investigated. The chemical durability of resulting waste forms was also examined. The results show that the ceramics with x < 0.1 show monoclinic and cubic zirconia phase, with 0.2  x < 0.4 exhibit a single cubic phase, with 0.4  x  0.6 exhibit a single pyrochlore phase, with 0.6 < x < 0.8 exhibit a single cubic phase and remain cubic phases and hexagonal Nd2O3 when 0.8  x  1. The unit cell parameters of the Nd-doped zirconia samples increase as the Nd content increases. Moreover, the normalized element release rates of Nd element in Nd-doped zirconia ceramics firstly decrease with leaching time and almost no change after 21 days (∼0−6 g m−2 d−1), demonstrating its good chemical durability.  相似文献   

15.
《Ceramics International》2017,43(2):1809-1818
The densification and biocompatibility of sintered 3.0 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) ceramics, with X wt% Fe2O3 and 5.0 wt% mica powders (denoted by 3Y-TZP: X-5.0 wt% mica) have been studied. When the pellets of 3Y-TZP: X-5.0 wt% mica were sintered at 1300 °C for 1 h, the relative shrinkage increases from 19.20–19.43% with the X increased from 0.3 to 1.0. The relative shrinkage of pellets containing 1.0 wt% Fe2O3 (X=1.0) increased from 19.43–19.59% when sintering temperatures were raised from 1300 °C to 1450 °C. X-ray diffraction results show that the pellets of 3Y-TZP: X-5.0 wt% mica sintered at 1400 °C for 1 h only contained single phase of tetragonal ZrO2 (t-ZrO2). When the sintering temperature was higher than 1400 °C, the Vickers microhardness was greatest in the pellets with X=0.5. Within pellets with the same Fe2O3 content, the dominant wavelength (λd) was only slightly different for pellets sintered at 1300 °C and those sintered at 1450 °C. The results of the materials were evaluated in vitro cytotoxicity tests reveals that the powders and sintered pellets are safe materials. The oral mucosa irritation tests did not find erythema or histopathological change including normal epithelium, and was free from leucocyte infiltration, vascular congestion and oedema.  相似文献   

16.
Nickel catalysts with a load of 5 wt.% Ni, supported on pure ZrO2 and ZrO2 stabilized with 4 mol%, 8 mol% and 12 mol% of Y2O3, were prepared by the polymerization method. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction with hydrogen (TPR-H2), specific surface area (BET) and electronic paramagnetic resonance (EPR) and tested as catalysts for carbon dioxide reforming of methane. The XRD patterns showed the presence of the oxide precursor (NiO) and the tetragonal phase of a Y2O3–ZrO2 solid solution. According to the TPR-H2 analysis, the reduction of various NiO species was influenced by the composition of the support. Catalytic tests were conducted at 800 °C for 6 h, and the composition of the gaseous products and the catalytic conversion rate depended on the composition of the Y2O3–ZrO2 solid solution and its influence on the supported NiO species. A direct relation was observed between the variation in the support, the nickel species supported on it and the performance in the catalytic tests.  相似文献   

17.
We report on how the mechanical properties of sintered ceramics (i.e., a random mixture of equiaxed grains) with the Al2O3–Y2O3–ZrO2 eutectic composition compare with those of rapidly or directionally solidified Al2O3–Y2O3–ZrO2 eutectic melts. Ceramic microcomposites with the Al2O3–Y2O3–ZrO2 eutectic composition were fabricated by sintering in air at 1400–1500 °C, or hot pressing at 1300–1400 °C. Fully dense, three phase composites of Al2O3, Y2O3-stabilized ZrO2 and YAG with grain sizes ranging from 0.4 to 0.8 μm were obtained. The grain size of the three phases was controlled by the size of the initial powders. Annealing at 1500 °C for 96 h resulted in grain sizes of 0.5–1.8 μm. The finest scale microcomposite had a maximum hardness of 19 GPa and a four-point bend strength of 282 MPa. The fracture toughness, as determined by Vickers indentation and indented four-point bending methods, ranged from 2.3 to 4.7 MPa m1/2. Although strengths and fracture toughnesses are lower than some directionally or rapidly solidified eutectic composites, the intergranular fracture patterns in the sintered ceramic suggest that ceramic microcomposites have the potential to be tailored to yield stronger, tougher composites that may be comparable with melt solidified eutectic composites.  相似文献   

18.
《Ceramics International》2017,43(16):13127-13132
In this study, we report highly transparent Er:Y2O3 ceramics (0–10 at% Er) fabricated by a vacuum sintering method using compound sintering additives of ZrO2 and La2O3. The transmittance, microstructure, thermal conductivity and mechanical properties of the Er:Y2O3 ceramics were evaluated. The in-line transmittance of all of the Er:Y2O3 ceramics (1.2 mm thick) exceeds 83% at 1100 nm and 81% at 600 nm. With an increase in the Er doping concentration from 0 to 10 at%, the average grain size, microhardness and fracture toughness remain nearly unchanged, while the thermal conductivity decreases slightly from 5.55 to 4.89 W/m K. A nearly homogeneous doping level of the laser activator Er up to 10 at% in macro-and nanoscale was measured along the radial direction from the center to the edge of a disk specimen, which is the prominent advantage of polycrystalline over single-crystal materials. Based on the finding of excellent optical and mechanical properties, the compound sintering additives of ZrO2 and La2O3 are demonstrated to be effective for the fabrication of transparent Y2O3 ceramics. These results may provide a guideline for the application of transparent Er:Y2O3 laser ceramics.  相似文献   

19.
Pure and Mn/Y codoped Ba0.67Sr0.33TiO3 (BST) ceramics were fabricated via the citrate–nitrate combustion technique, and the microstructure and electrical properties of BST ceramics were mainly investigated. The Mn/Y codoping concentration has a strong influence on the microstructure and electrical properties of BST ceramics. All BST ceramics possess a pure polycrystalline structure. The density, dielectric loss, leakage current, and ferroelectric properties are improved by codoping 0.5 mol% Mn and 1.0 mol% Y to BST. The relative density of 0.5 mol% Mn/1.0 mol% Y-codoped BST (BST0510) ceramics reaches 97.5% of the theoretical value. BST0510 ceramics have the lowest dielectric loss (tanδ < 0.0073 at 1 kHz) among all BST ceramics. BST0510 ceramics also demonstrate a low leakage current density (1.23 × 10?7 A/cm2) at an applied field of 10 kV/cm, and excellent ferroelectric properties with a remanent polarization of 2Pr = 15.327 μC/cm2 and a coercive field of 2Ec = 3.456 kV/cm. Therefore, the Mn and Y with optimum content help improve the electrical properties of BST materials.  相似文献   

20.
《Ceramics International》2016,42(15):16584-16588
3.5 mol% Er2O3 stabilized ZrO2 (ErSZ) and Gd2Zr2O7 powders were produced by a chemical co-precipitation and calcination method, and ErSZ was used to toughen Gd2Zr2O7. The phase structure, toughness and thermal conductivities of ErSZ toughened Gd2Zr2O7 ceramics were investigated. When the ErSZ content was below 15 mol%, the compound consisted of pyrochlore phase, the ordering degree of which decreased with the increase of the ErSZ content. High ErSZ doping led to the formation of metastable tetragonal (t′) phase in the compound. The addition of ErSZ in Gd2Zr2O7 benefited its toughness, mainly attributable to the presence of t′ phase in the compound. With the increase of the ErSZ content in the compound, the thermal conductivity first decreased and then showed an upward tendency, and 10 mol% ErSZ toughened Gd2Zr2O7 exhibited the lowest thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号