首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we discuss a flexible flow shop scheduling problem with batch processing machines at each stage and with jobs that have unequal ready times. Scheduling problems of this type can be found in semiconductor wafer fabrication facilities (wafer fabs). We are interested in minimizing the total weighted tardiness of the jobs. We present a mixed integer programming formulation. The batch scheduling problem is NP-hard. Therefore, an iterative stage-based decomposition approach is proposed that is hybridized with neighborhood search techniques. The decomposition scheme provides internal due dates and ready times for the jobs on the first and second stage, respectively. Each of the resulting parallel machine batch scheduling problems is solved by variable neighborhood search in each iteration. Based on the schedules of the subproblems, the internal due dates and ready times are updated. We present the results of designed computational experiments that also consider the number of machines assigned to each stage as a design factor. It turns out that the proposed hybrid approach outperforms an iterative decomposition scheme where a fairly simple heuristic based on time window decomposition and the apparent tardiness cost dispatching rule is used to solve the subproblems. Recommendations for the design of the two stages with respect to the number of parallel machines on each stage are given.  相似文献   

2.
This research analyzes the problem of scheduling a set of n jobs with arbitrary job sizes and non-zero ready times on a set of m unrelated parallel batch processing machines so as to minimize the makespan. Unrelated parallel machine is a generalization of the identical parallel processing machines and is closer to real-world production systems. Each machine can accommodate and process several jobs simultaneously as a batch as long as the machine capacity is not exceeded. The batch processing time and the batch ready time are respectively equal to the largest processing time and the largest ready time among all the jobs in the batch. Motivated by the computational complexity and the practical relevance of the problem, we present several heuristics based on first-fit and best-fit earliest job ready time rules. We also present a mixed integer programming model for the problem and a lower bound to evaluate the quality of the heuristics. The small computational effort of deterministic heuristics, which is valuable in some practical applications, is also one of the reasons that motivates this study. The results show that the heuristic proposed in this paper has a superior performance compared to the heuristics based on ideas proposed in the literature.  相似文献   

3.
This research is motivated by a scheduling problem found in the diffusion and oxidation areas of semiconductor wafer fabrication, where the machines can be modeled as parallel batch processors. We attempt to minimize total weighted tardiness on parallel batch machines with incompatible job families and unequal ready times of the jobs. Given that the problem is NP-hard, we propose two different decomposition approaches. The first approach forms fixed batches, then assigns these batches to the machines using a genetic algorithm (GA), and finally sequences the batches on individual machines. The second approach first assigns jobs to machines using a GA, then forms batches on each machine for the jobs assigned to it, and finally sequences these batches. Dispatching and scheduling rules are used for the batching phase and the sequencing phase of the two approaches. In addition, as part of the second decomposition approach, we develop variations of a time window heuristic based on a decision theory approach for forming and sequencing the batches on a single machine.  相似文献   

4.
In this paper we consider the problem of scheduling a set of identical batch processing machines arranged in parallel. A Greedy Randomized Adaptive Search Procedure (GRASP) approach is proposed to minimize the makespan under the assumption of non-zero job ready times, arbitrary job sizes and arbitrary processing times. Each machine can process simultaneously several jobs as a batch as long as the machine capacity is not violated. The batch processing time is equal to the largest processing time among those jobs in the batch. Similarly, the batch ready time is equal to the largest ready time among those jobs in the batch. The performance of the proposed GRASP approach was evaluated by comparing its results to a lower bound and heuristics published in the literature. Experimental study suggests that the solution obtained from the GRASP approach is superior compared to other heuristics.  相似文献   

5.
In scheduling of batch processing machines in the diffusion and oxidation areas of a wafer fabrication facility, it can be found that the processing times of these batching operations can be extremely long (10 h) when compared to other operations (1-2 h) in a wafer fab. Moreover, the jobs to be processed may have different priorities/weights, due dates and ready times. In the presence of unequal ready times, it would be better to wait for future job arrivals in order to increase the fullness of the batch. On the other hand, repeated processing of similar tasks improves workers’ skills. Motivated by these observations, we consider a single-machine problem with the sum of processing times based learning effect and release times. The objective is to find a schedule to minimize the total completion times. We first develop a branch-and-bound algorithm for the optimal solution. Then we propose a simulated-annealing heuristic algorithm for a near-optimal solution. Finally, we conduct a computational experiment to evaluate the performances of the proposed algorithms. The results show that the branch-and-bound algorithm can solve instances up to 24 jobs, and the average error percentage of the simulated-annealing algorithm is less than 0.1482%.  相似文献   

6.
基于到达时间两台并行机上在线批调度   总被引:1,自引:0,他引:1  
考虑两台同构并行机上在线批调度问题.每个批具有不确定的到达时间,一旦机器可以利用,要在当前可以利用的批中选择出合适的批,并将其中的工件调度到机器上,且工件在加工过程中不允许中断.目标函数是使调度的最大完成时间最小.给出了一个批在线调度RBLPT算法,即选择当前批中加工时间之和最大的批按LPT 规则调度.另外,利用反证法,对算法的最坏情况进行了分析.  相似文献   

7.
Scheduling unrelated parallel batch processing machines to minimize makespan is studied in this paper. Jobs with non-identical sizes are scheduled on batch processing machines that can process several jobs as a batch as long as the machine capacity is not violated. Several heuristics based on best fit longest processing time (BFLPT) in two groups are proposed to solve the problem. A lower bound is also proved to evaluate the quality of the heuristics. Computational experiments were undertaken. These showed that J_SC-BFLPT, considering both load balance of machines and job processing times, was robust and outperformed other heuristics for most of the problem categories.  相似文献   

8.
The importance of the ready times can be found in Wafer fabrication with the presence of unequal ready times. It is sometimes advantageous to form a non-full batch, while in other situations it is a better strategy to wait for future job arrivals in order to increase the fullness of the batch. On the other hand, there is a significant involvement of humans in scheduling environments; the amount of learning activities is high. Hence it seems to be reasonable to consider learning in scheduling environments. However, research with learning and release times is relatively unexplored. Motivated by this observation, this paper deals with a single-machine problem with the learning effect and release times where the objective is to minimize the makespan. This paper proposes a branch-and-bound algorithm and three two-stage heuristic algorithms for the problem. The computational experiments show that the branch-and-bound algorithm can solve instances up to 25 jobs, and the best one with the average error percentage of the proposed heuristics is less than 0.05%.  相似文献   

9.
This paper presents several search heuristics and their performance in batch scheduling of parallel, unrelated machines. Identical or similar jobs are typically processed in batches in order to decrease setup times and/or processing times. The problem accounts for allotting batched work parts into unrelated parallel machines, where each batch consists of a fixed number of jobs. Some batches may contain different jobs but all jobs within each batch should have an identical processing time and a common due date. Processing time of each job of a batch is determined according to the machine group as well as the batch group to which the job belongs. Major or minor setup times are required between two subsequent batches depending on batch sequence but are independent of machines. The objective of our study is to minimize the total weighted tardiness for the unrelated parallel machine scheduling. Four search heuristics are proposed to address the problem, namely (1) the earliest weighted due date, (2) the shortest weighted processing time, (3) the two-level batch scheduling heuristic, and (4) the simulated annealing method. These proposed local search heuristics are tested through computational experiments with data from dicing operations of a compound semiconductor manufacturing facility.  相似文献   

10.
This application is motivated by a complex real-world scheduling problem found in the bottleneck workstation of the production line of an automotive safety glass manufacturing facility. The scheduling problem consists of scheduling jobs (glass parts) on a number of parallel batch processing machines (furnaces), assigning each job to a batch, and sequencing the batches on each machine. The two main objectives are to maximize the utilization of the parallel machines and to minimize the delay in the completion date of each job in relation to a required due date (specific for each job). Aside from the main objectives, the output batches should also produce a balanced workload on the parallel machines, balanced job due dates within each batch, and minimal capacity loss in the batches. The scheduling problem also considers a batch capacity constraint, sequence-dependent processing times, incompatible product families, additional resources, and machine capability. We propose a two-phase heuristic approach that combines exact methods with search heuristics. The first phase comprises a four-stage mixed-integer linear program for building the batches; the second phase is based on a Greedy Randomized Adaptive Search Procedure for sequencing the batches assigned to each machine. We conducted experiments on instances with up to 100 jobs built with real data from the manufacturing facility. The results are encouraging both in terms of computing time—5 min in average—and quality of the solutions—less than 10 % relative gap from the optimal solution in the first phase and less than 5 % in the second phase. Additional experiments were conducted on randomly generated instances of small, medium, and large size.  相似文献   

11.
This paper presents a novel, two-level mixed-integer programming model of scheduling N jobs on M parallel machines that minimizes bi-objectives, namely the number of tardy jobs and the total completion time of all the jobs. The proposed model considers unrelated parallel machines. The jobs have non-identical due dates and ready times, and there are some precedence relations between them. Furthermore, sequence-dependent setup times, which are included in the proposed model, may be different for each machine depending on their characteristics. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time using traditional approaches or optimization tools is extremely difficult. This paper proposes an efficient genetic algorithm (GA) to solve the bi-objective parallel machine scheduling problem. The performance of the presented model and the proposed GA is verified by a number of numerical experiments. The related results show the effectiveness of the proposed model and GA for small and large-sized problems.  相似文献   

12.
Nowadays in competitive markets, production organizations are looking to increase their efficiency and optimize manufacturing operations. In addition, batch processor machines (BPMs) are faster and cheaper to carry out operations; thus the performance of manufacturing systems is increased. This paper studies a production scheduling problem on unrelated parallel BPMs with considering the release time and ready time for jobs as well as batch capacity constraints. In unrelated parallel BPMs, modern machines are used in a production line side by side with older machines that have different purchasing costs; so this factor is introduced as a novel objective to calculate the optimum cost for purchasing various machines due to the budget. Thus, a new bi-objective mathematical model is presented to minimize the makespan (i.e., Cmax), tardiness/earliness penalties and the purchasing cost of machines simultaneously. The presented model is first coded and solved by the ε-constraint‌ method. Because of the complexity of the NP-hard problem, exact methods are not able to optimally solve large-sized problems in a reasonable time. Therefore, we propose a multi-objective harmony search (MOHS) algorithm. the results are compared with the multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm (NSGA-II), and multi-objective ant colony optimization algorithm (MOACO). To tune their parameters, the Taguchi method is used. The results are compared by five metrics that show the effectiveness of the proposed MOHS algorithm compared with the MOPSO, NSGA-II and MOACO. At last, the sensitivity of the model is analyzed on new parameters and impacts of each parameter are illustrated on bi- objective functions.  相似文献   

13.
There are many scheduling problems which are NP-hard in the literature. Several heuristics and dispatching rules are proposed to solve such hard combinatorial optimization problems. Genetic algorithms (GA) have shown great advantages in solving the combinatorial optimization problems in view of its characteristic that has high efficiency and that is fit for practical application [1]. Two different scale numerical examples demonstrate the genetic algorithm proposed is efficient and fit for larger scale identical parallel machine scheduling problem for minimizing the makespan. But, even though it is a common problem in the industry, only a small number of studies deal with non-identical parallel machines. In this article, a kind of genetic algorithm based on machine code for minimizing the processing times in non-identical machine scheduling problem is presented. Also triangular fuzzy processing times are used in order to adapt the GA to non-identical parallel machine scheduling problem in the paper. Fuzzy systems are excellent tools for representing heuristic, commonsense rules. That is why we try to use fuzzy systems in this study.  相似文献   

14.
The paper describes a framework for parallel machine scheduling in complex manufacturing systems. Complex manufacturing systems are characterized by groups of parallel machines, machine dedications, sequence dependent setup times, batch processes, prescribed due dates of the jobs, and a diverse and over time changing product mix. In the present paper, a four-phase algorithm is suggested that covers a broad range of process conditions. The frameworks contains a first phase that deals with the formation of scheduling entities. The second phase is used to assign the scheduling entities to the parallel machines. The sequence of the scheduling entities is determined in the third phase on each single machine. The schedules are improved by the final, optional fourth phase. The paper describes software development issues, the integration of the framework into other information systems on the shopfloor, and the performance assessment of a case study.  相似文献   

15.
This paper deals with the problem of task scheduling in a no-wait flowshop with two batching machines. Each task has to be processed by both machines. All tasks visit the machines in the same order. Batching machines can process several tasks per batch so that all tasks of the same batch start and complete together. The batch processing time for the first machine is equal to the maximal processing time of the tasks in this batch, and for the second machine is equal to the sum of the processing times of the tasks in this batch. We assume that the capacity of any batch on the first machine is bounded, and that when a batch is completed on the first machine it is immediately transferred to the second machine. The aim is to make batching and sequencing decisions that allow the makespan to be minimized.  相似文献   

16.
This paper considers scheduling problems where jobs are dispatched in batches. The objective is to minimize the sum of the completion times of the batches. While a machine can process only one job at a time, multiple machines can simultaneously process jobs in a batch. This simple environment has a variety of real world applications such as part kitting and customer order scheduling.A heuristic is presented for the parallel machine version of the problem. Also, a tight worst case bound on the relative error is found. For the case of two parallel machines, we examine two heuristics, which are based on simple scheduling rules. We find tight worst case bounds of 6/5 and 9/7 on the relative error and show that neither procedure is superior for all instances. Finally, we empirically evaluate these two heuristics. For large problems, the methods find solutions that are close to optimal.  相似文献   

17.
In this paper, we discuss a scheduling problem for parallel batch machines where the jobs have ready times. Problems of this type can be found in semiconductor wafer fabrication facilities (wafer fabs). In addition, we consider precedence constraints among the jobs. Such constraints arise, for example, in scheduling subproblems of the shifting bottleneck heuristic when complex job shop scheduling problems are tackled. We use the total weighted tardiness as the performance measure to be optimized. Hence, the problem is NP-hard and we have to rely on heuristic solution approaches. We consider a variable neighborhood search (VNS) scheme and a greedy randomized adaptive search procedure (GRASP) to compute efficient solutions. We assess the performance of the two metaheuristics based on a large set of randomly generated problem instances and based on instances from the literature. The obtained computational results demonstrate that VNS is a very fast heuristic that quickly leads to high-quality solutions, whereas the GRASP is slightly outperformed by the VNS approach. However, the GRASP approach has the advantage that it can be parallelized in a more natural manner compared to VNS.  相似文献   

18.
We consider the problem of scheduling n identical jobs with unequal ready times on m parallel uniform machines to minimize the maximum lateness. This paper develops a branch-and-bound procedure that optimally solves the problem and introduces six simple single-pass heuristic procedures that approximate the optimal solution. The branch-and-bound procedure uses the heuristics to establish an initial upper bound. On sample problems, the branch-and-bound procedure in most instances was able to find an optimal solution within 100,000 iterations with n≤80 and m≤3. For larger values of m, the heuristics provided approximate solutions close to the optimal values.  相似文献   

19.
In many management situations, multiple agents compete on the usage of common processing resources. On the other hand, the importance of the ready times can be shown in Wafer fabrication with the presence of unequal ready times. It is sometimes advantageous to form a non-full batch, while in other situations it is a better strategy to wait for future job arrivals in order to increase the fullness of the batch. However, research on scheduling with two-agent and ready time simultaneously is relatively unexplored. This paper addresses a single-machine two-agent scheduling problem with ready times. The aim is to find an optimal schedule to minimize the total completion time of the jobs of the first agent with the restriction that total completion time is allowed an upper bound for the second agent. To the best of our knowledge, the problem under study has not been considered. Firstly, we show that the proposed problem is strongly NP-hard. Following that, we then develop a branch-and-bound, an ant colony, and four genetic algorithms for an optimal and near-optimal solution, respectively. In addition, the extensive computational experiments are also given.  相似文献   

20.
We study the online batch scheduling problem on parallel machines with delivery times. Online algorithms are designed on m parallel batch machines to minimize the time by which all jobs have been delivered. When all jobs have identical processing times, we provide the optimal online algorithms for both bounded and unbounded versions of this problem. For the general case of processing time on unbounded batch machines, an online algorithm with a competitive ratio of 2 is given when the number of machines m=2 or m=3, respectively. When m≥4, we present an online algorithm with a competitive ratio of 1.5+o(1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号