首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BaTiO3 based ceramics (with some additives such as ZrO2, SnO2, etc.) were prepared by solid state reaction. Mn2+ or Mn3+ as an acceptor substituting for Ti4+ in B site and Bi3+ as a donor substituting for Ba2+ in A site were co-doped in BaTiO3 based ceramics. The dielectric properties of BaTiO3 based ceramics co-doped with Bi/Mn were investigated. The results show that the dielectric properties of BaTiO3 based ceramics co-doped with Bi/Mn are affected by the mole ratio of donor and acceptor (Bi/Mn). When the mole ratio of donor and acceptor is high, dielectric dispersion behavior was observed and the dielectric constant decrease and remnant polarization, coercive field and piezoelectric constant will varied. When Bi varied from 1.0% to 2.0 mol% (Mn = 0.8 mol%), remnant polarization from 10.35 to 2.25 μC/cm2, coercive field from 4 to 2.75 kV/cm, and piezoelectric constant d33 from 137 to 36 pC/N respectively.  相似文献   

2.
The morphological, compositional, structural, dielectric and electrical properties of Bi1.5Zn0.92Nb1.5?xSnxO6.92?x/2 ceramics have been investigated by means of scanning electron microscopy (SEM), X-ray energy dispersion spectroscopy (EDS), X-ray diffraction (XRD), temperature and frequency dependent dielectric constant and temperature dependent conductivity measurements for Sn-contents in the range of 0.00  x  0.60. It was shown that single phase of the pyrochlore ceramics can only be obtained for x  0.25. Above this value a ZnO phase appeared in the XRD patterns and SEM micrographs as well. An increase in the lattice constant and in the temperature coefficient of dielectric constant and a decrease in the dielectric constant values with increasing Sn content was observed for the ceramics which exhibited a single phase formation. A temperature dependent but frequency invariant dielectric constant was observed for this type of ceramics. The lowest electrical conductivity and highest dielectric constant was observed for the sample which contains 0.06 Sn. The Bi1.5Zn0.92Nb1.5?xSnxO6.92?x/2 pyrochlore ceramic conductivities are thermally active above 395 K. For temperatures greater than 395 K, the conductivity activation energy which was found to be 0.415 eV for the pure sample increased to 1.371 eV when sample was doped with 0.06 Sn.  相似文献   

3.
(Na1/2Bi1/2)TiO3 doped in situ with 11 mol% BaTiO3 (NBT–BT0.11) powders were synthesized by a sol–gel method, and the electrical properties of the resulting ceramics were investigated. The powders consisting of uniform and fine preliminary particles of about 50 nm were prepared by calcining the gel precursor at 700 °C. (Na1/2Bi1/2)0.89Ba0.11TiO3 ceramics, sintered at temperatures up to 1150 °C have a rhombohedral symmetry, while the ceramic sintered at 1200 °C exhibits a tetragonal crystalline structure. The ceramics show high dielectric constant (?r  5456), dielectric loss of 0.02, depolarization temperature Td  110 °C and temperature corresponding to the maximum value of dielectric constant Tm  262 °C. The dielectric constant (?33) and the piezoelectric constant (d33) attain the maximum values of 924 and 13 pC/N, respectively, while the electromechanical coupling factor (kp) value is 0.035. The NBT–BT0.11 ceramics derived from sol–gel present high mechanical quality factor (Qm  860). The dielectric and piezoelectric properties values of NBT–BT0.11 ceramics derived from sol–gel are smaller than those of samples produced by the conventional solid state reaction method, due to the grains size and oxygen vacancies that generate dipolar defects.  相似文献   

4.
《Ceramics International》2016,42(6):6993-7000
This paper reports the significant improved piezoelectric properties of high temperature bismuth titanate niobate (Bi3TiNbO9, BTN) polycrystalline ceramics. The piezoelectric performance of BTN ceramics is significantly enhanced by cerium modifications. The dielectric measurements indicate that the Curie temperature Tc gradually decreases over the temperature range of 907–889 °C with cerium contents increasing up to 0.7 wt%. The BTN-5Ce (BTN+0.5 wt% CeO2) exhibits optimized piezoelectric properties with a piezoelectric constant d33 of 16 pC/N, which is five times the value of unmodified BTN (d33~3 pC/N), while BTN-5Ce maintains a high Curie temperature Tc of 894 °C. The temperature-dependent electrical impedance and electromechanical coupling factors (kp, and kt) reveal that the BTN-5Ce exhibits thermally stable electromechanical coupling characteristics up to 500 °C but significantly deteriorates at 600 °C due to high conductivity at a higher temperature. The thermally stable electromechanical properties in combination with the ceramics׳ high electrical resistivity (106 Ω cm at 500 °C) and high Curie temperature (~900 °C) demonstrate that cerium-modified BTN ceramics are good materials for high temperature sensing applications.  相似文献   

5.
6.
《Ceramics International》2015,41(8):9729-9733
CaBi4Ti4O15–Bi4Ti3O12 (CBT–BIT) ceramics were synthesized using a solid state reaction method. The X-ray diffraction (XRD) analysis revealed the existence of bismuth layered perovskite phase with orthorhombic crystal structure. High-resolution transmission electron microscopy (HRTEM) confirmed the alternate arrangement of CBT part and BIT part along c axis in the intergrowth structure. CBT–BIT ceramics showed excellent thermal stability of the dielectric loss (tan δ), but the relaxation of dielectric loss in the 100 Hz to 1 MHz frequency range had been observed. Meanwhile, an enhanced piezoelectric constant (d33) value of 15 pC/N was observed without degradation even the temperature up to 650 °C. The dc resistivity (ρdc) of CBT–BIT performed a high value of 5.68×1014  cm) at room temperature (RT). In addition, the ρdc values of CBT–BIT within the temperature range of 100–450 °C were close to those of CBT and kept almost one hundred times higher than those of BIT.  相似文献   

7.
《Ceramics International》2016,42(10):11692-11699
Sm/Mn codoped BaTiO3 ceramics were investigated for their microstructure and dielectric characteristics. The powders were prepared by the conventional solid state procedure. The concentration of Sm2O3 as a donor dopant has been kept from 0.1 up to 5.0 at%. The content of MnO2 as acceptor was kept constant at 0.05 at% Mn in all samples. The specimens were sintered at 1290 °C, 1320 °C and 1350 °C in an air atmosphere for two hours.A mainly uniform and homogeneous microstructure with average grain size ranging from 0.3 µm to 2.0 µm was observed in low doped samples. In highly doped samples, apart from the fine grained matrix, the appearance of local area with secondary abnormal grains was observed.The dielectric properties were investigated as a function of frequency and temperature. The low doped samples exhibit the high value of dielectric permittivity at room temperature and the greatest change at the Curie temperature. The highest value of dielectric constant (εr=6800) was measured for 0.1Sm/BaTiO3 samples sintered at 1350 °C. A nearly flat permittivity-temperature response and lower values of εr were obtained in specimens with 2.0 and 5.0 at% additive content. The dielectric constant increases with the increase of sintering temperature. The dissipation factor ranged from 0.01 to 0.22 and decreases with the increase of sintering temperature. The Curie constant (C), Curie-Weiss temperature (T0) and critical exponent of nonlinearity (γ ) were calculated using a Curie-Weiss and modified Curie-Weiss law. The highest value of Curie constant (C=9.06·105 K) was measured in 0.1 at% doped samples. The Curie constant decreased with increasing dopant content. The γ values, ranging from 1.001 to 1.58, point out the sharp phase transition in low doped samples, and the diffuse phase transition in heavily doped BaTiO3 samples.  相似文献   

8.
This research studied the effect of Nb doping on Bi0.5Na0.5[Ti0.41Zr0.59]O3 (when Nb concentration = 0.00, 0.01, 0.03, 0.05, 0.07 and 0.09 mol fraction). Nb doped BNTZ ceramics were fabricated using a conventional mixed-oxide method. All samples were calcined at a temperature of 700 °C for 2 h and sintered at a temperature of 900 °C for 2 h. X-ray diffraction patterns suggested that the compounds possessed rhombohedral perovskite structure. SEM micrographs indicated that average grain size decreased as the amount of Nb additives increased. The electrical resistivity showed a decreasing trend with increasing Nb concentration due to excess charge present in the sample. The dielectric constant and dielectric loss of samples showed no particular trend when Nb was added but the optimum was observed when 0.05–0.07 Nb mol fraction was present in BNTZ ceramics. In this study, both microstructure and donor-type effects played an important role in determining electrical resistivity and dielectric properties of these ceramics.  相似文献   

9.
In this study, the B2O3 doped Ba(Ti0.9Sn0.1)O3 ceramics were prepared by using a solid state reaction method. Wide ranges of frequency (0.1 Hz to 1 MHz) and temperature (20–280 °C) dependence of the impedance relaxation were investigated. The impedance study indicates the presence of both dielectric relaxation in bulk and grain boundary effects in the material. The relaxation times for grain and grain boundary estimated from Cole–Cole plots varied with temperature according to the Arrhenius relation. The activation energy for grain and grain boundary were estimated to be 0.73 and 0.85 eV, respectively.  相似文献   

10.
Si3N4–SiCN composite ceramics were successfully fabricated through precursor infiltration pyrolysis (PIP) method using polysilazane as precursor and porous Si3N4 as preform. After annealed at temperatures varying from 900 °C to 1400 °C, the phase composition of SiCN ceramics, electrical conductivity and dielectric properties of Si3N4–SiCN composite ceramics over the frequency range of 8.2–12.4 GHz (X-band) were investigated. With the increase of annealing temperature, the content of amorphous SiCN decreases and that of N-doped SiC nano-crystals increases, which leads to the increase of electrical conductivity. After annealed at 1400 °C, the average real and imaginary permittivities of Si3N4–SiCN composite ceramics are increased from 3.7 and 4.68 × 10?3 to 8.9 and 1.8, respectively. The permittivities of Si3N4–SiCN composite ceramics show a typical ternary polarization relaxation, which are ascribed to the electric dipole and grain boundary relaxation of N-doped SiC nano-crystals, and dielectric polarization relaxation of the in situ formed graphite. The Si3N4–SiCN composite ceramics exhibit a promising prospect as microwave absorbing materials.  相似文献   

11.
The effects of Bi2O3 addition on the microwave dielectric properties and the microstructures of Nb2O5-Zn0.95Mg0.05TiO3 + 0.25TiO2 (Nb-ZMT′) ceramics prepared by conventional solid-state routes have been investigated. The results of X-ray diffraction (XRD) indicate the presence of four crystalline phases, ZnTiO3, TiO2, Bi2Ti2O7, and (Bi1.5Zn0.5)(Ti1.5Nb0.5)O7 in the sintered ceramics, depending upon the amount of Bi2O3 addition. In addition, in order to confirm the existence of (Bi1.5Zn0.5)(Ti1.5Nb0.5)O7 phase in the samples, the microstructure of Nb-ZMT′ ceramic with 5 wt.% B2O3 addition was analyzed by using a transmission electron micrograph. The dielectric constant of Nb-ZMT′ samples was higher than ZMT′ ceramics. The Nb-ZMT′ ceramic with 5 wt.% Bi2O3 addition exhibits the optimum dielectric properties: Q × f = 12,000 GHz, ?r = 30, and τf = ?12 ppm/°C. Unlike the ZMT′ ceramic sintered at 900 °C, the Nb-ZMT′ ceramics show higher Q value and dielectric constant. Moreover, there is no Zn2TiO4 existence at 960 °C sintering. To understand the co-sinterability between silver electrodes and the Nb-ZMT′ dielectrics, the multilayer samples are prepared by multilayer thick film processing. The co-sinterability (900 °C) between silver electrode and Nb-ZMT′ dielectric are well compatible, because there are no cracks, delaminations, and deformations in multilayer specimens.  相似文献   

12.
《Ceramics International》2016,42(3):4274-4284
Bi0.5(Na0.65K0.35)0.5TiO3 (BNKT) and Mn-modified Bi0.5(Na0.65K0.35)0.5(MnxTi1−x)O3 (BNKMT-103x), (x=0.0–0.5%) ferroelectric ceramics were synthesized by solid-state reaction method. Optimization of calcination temperature in Mn-doped ceramics was carried out for the removal of secondary phases observed in XRD analysis. BNKMT ceramics sintered at 1090 °C showed enhanced dielectric, piezoelectric and ferroelectric properties in comparison to pure BNKT. The average grain size was found to increase from 0.35 μm in BNKT to 0.52 μm in Bi0.5(Na0.65K0.35)0.5(Mn0.0025Ti0.9975)O3 (BNKMT-2.5) ceramics. The dielectric permittivity maximum temperature (Tm) was increased to a maximum of 345 °C with Mn-modification. AC conductivity analysis was performed as a function of temperature and frequency to investigate the conduction behavior and determine activation energies. Significant high value of piezoelectric charge coefficient (d33=176 pC/N) was achieved in BNKMT 2.5 ceramics. Improved temperature stability of ferroelectric behavior was observed in the temperature dependent P–E hysteresis loops as a result of Mn-incorporation. The fatigue free nature along with enhanced dielectric and ferroelectric properties make BNKMT-2.5 ceramic a promising candidate for replacing lead based ceramics in device applications.  相似文献   

13.
《Ceramics International》2015,41(4):5492-5497
The Aurivillius-type bismuth layer-structured ferroelectrics (BLSFs) sodium lanthanum bismuth titanate (Na0.5La0.5Bi4Ti4O15, NLBT) polycrystalline ceramics with 0.0–0.4 wt% MnO2 were synthesized using conventional solid-state processing. Phase analyses were performed by X-ray powder diffraction (XRPD), and the microstructural morphology was assessed by scanning electron microscopy (SEM). The dielectric and piezoelectric properties of the manganese-modified NLBT ceramics were investigated in detail. The results show that manganese is very effective in promoting the piezoelectric activities of NLBT ceramics, and the reasons for piezoelectric activities enhancement by manganese modification are explained. The NLBT ceramics modified with 0.2 wt% MnO2 (NLBT-Mn2) possess good piezoelectric properties, with a piezoelectric coefficient d33 of 28 pC/N. This value is the highest value among the modified NLBT-based piezoelectric ceramics examined. The temperature-dependent dielectric spectra show that the Curie temperature Tc of the manganese-modified NLBT ceramics is slightly higher than that of the pure NLBT ceramics. Thermal annealing analysis revealed that the manganese-modified NLBT ceramics possess good thermal stabilities up to 500 °C. These results demonstrate that the manganese-modified NLBT ceramics are promising materials for high temperature piezoelectric applications.  相似文献   

14.
Li2CO3 has been used as a sintering aid for fabricating lead-free ferroelectric ceramic 0.93(Bi0.5Na0.5TiO3)-0.07BaTiO3. A small amount (0.5 wt%) of it can effectively lower the sintering temperature of the ceramic from 1200 °C to 980 °C. Unlike other low temperature-sintered ferroelectric ceramics, the ceramic retains its good dielectric and piezoelectric properties, giving a high dielectric constant (1570), low dielectric loss (4.8%) and large piezoelectric coefficient (180 pC/N). The “depolarization” temperature is also increased to 100 °C and the thermal stability of piezoelectricity is improved. Our results reveal that oxygen vacancies generated from the diffusion of the sintering aid into the lattices are crucial for realizing the low temperature sintering. Owing to the low sintering temperature and good dielectric and piezoelectric properties, the ceramics, especially of multilayered structure, should have great potential for practical applications.  相似文献   

15.
《Ceramics International》2016,42(3):4268-4273
Lightly cobalt-modified, Aurivillius-type, sodium bismuth titanate (Na0.5Bi4.5Ti4O15, NBT) ceramics were synthesized by substituting a small amount of cobalt ions onto the Ti4+ sites using conventional solid-state reaction. X-ray photoelectron spectroscopy (XPS) analysis coupled with bond valence sum calculations show that the dopant cobalt ions substitute for Ti4+ ions in the form of Co3+. The resultant cobalt-modified NBT ceramics (NBT-Co) exhibit better piezoelectric and electromechanical properties by comparison with pure NBT. With only 0.3 wt% Co3+ substitution, the piezoelectric properties of the NBT-Co ceramics are optimal, exhibiting a high piezoelectric coefficient (d33~33 pC/N), a low dielectric loss tan δ (~0.1% at 1 kHz), a high thickness planar coupling coefficient (kt~34%) as well as a high Curie temperature (Tc~663 °C). Such NBT-Co ceramics exhibit nearly temperature-independent piezoelectric and electromechanical properties up to 400 °C, suggesting that these cobalt-modified NBT ceramics are promising materials for high temperature piezoelectric applications.  相似文献   

16.
A considerable reduction (≥250 °C) in the sintering temperature, enhancement of the sintering density, and a slight improvement of the electrical properties, can be achieved by using bismuth oxide in the range of 0.2 to 2 wt.%, as a sintering aid for gadolinia-doped ceria (GDC) ceramic electrolytes. Dilatometric experiment (CHR) and SEM observations indicate that a liquid phase-assisting sintering mechanism contributes to the improvement in sintering density for bismuth oxide concentrations exceeding 0.5 wt.%. The addition of small amount of Bi2O3 ≤0.5 wt.% also results in the achievement of highly dense ceramic bodies (≥99% of theoretical density) after sintering at 1200 °C for 4 h, which indicates that the addition of Bi2O3 to gadolinia-doped ceria promoted the sintering process by a cooperating volume diffusion-liquid phase-assisting mechanism. Based on the lattice constant data, the solid solubility limit of Bi2O3 in gadolinia-ceria is, probably, lower than 1.0 wt.%. Grain size also increased with increasing Bi2O3 content up to 0.5 wt.% and then it decreased with further addition of Bi2O3. The addition of the smaller amounts of bismuth oxide, i.e., ≤1.0 wt.% Bi2O3 slightly enhanced the total ionic electrical conductivity of the gadolinia-doped ceria electrolyte. The sintering temperature strongly influenced the electrical conductivity of the doped-GDC ceramics. The best sample was that containing 1.0 wt.% Bi2O3 sintered at 1400 °C for 2 h which had an ionic electrical conductivity of 4 S m−1 at 700 °C, and an activation energy of 0.58 eV for the oxide-ion conduction process in air.  相似文献   

17.
Textured (Na,K)0.5Bi0.5TiO3 ceramics were fabricated by reactive-templated grain growth in combination with tape casting. The effects of sintering conditions on the grain orientation and the piezoelectric properties of the textured (Na,K)0.5Bi0.5TiO3 ceramics were investigated. The results show that the textured ceramics have microstructure with plated-like grains aligning in the direction parallel to the casting plane. The ceramics exhibit {h 0 0} preferred orientation and the degree of orientation is larger than 0.7. The degree of grain orientation increases with the increasing sintering temperature. The textured ceramics show anisotropy dielectric and piezoelectric properties in the directions of parallel and perpendicular to the casting plane. The ceramics in the perpendicular direction exhibit better dielectric and piezoelectric properties than those of the nontextured ceramics with the same composition. The optimized sintering temperature is 1150 °C where the maximum d33 of 134 pC/N parallel to casting plane, the maximum k31 of 0.31, and the maximum Qm of 154 in perpendicular direction were obtained.  相似文献   

18.
The preparation, sintering behaviour, and dielectric properties of low loss LaBO3 ceramics have been investigated. Single-phase LaBO3 powder was synthesized by the conventional solid-state ceramics route and dense ceramics (relative density >96%) with uniform microstructure (grain size ~30 μm) were obtained by sintering at 1300 °C in air. The electrical conductivity of LaBO3 follows the Arrhenius law and the related activation energies for electrical conduction of bulk and grain boundary are 0.62 eV and 0.90 eV, respectively. The LaBO3 ceramics sintered at 1300 °C exhibit excellent microwave dielectric properties with a relative permittivity, ?r  11.8, a quality factor, Q × f0 value ~76,869 GHz (at ~15 GHz), and a negative temperature coefficient of resonant frequency τf  ?52 ppm/°C.  相似文献   

19.
《Ceramics International》2017,43(6):5002-5006
High temperature lead-free Bismuth layer-structured (Li, Ce, Y)-substituted CBN piezoelectric ceramics were prepared by the solid-state reaction method. The phase structure, microstructure, piezoelectric property, dielectric property, thermal stability and electric property of the (Li, Ce, Y)-substituted CBN ceramics were studied. X-ray diffraction and SEM revealed the doped ceramics had typical bismuth layer-structure. The piezoelectric coefficient was improved significantly and the maximum value was ~16.1 pC/N.The Curie temperature of all the samples were in the range of 925–941 °C that was close to or even excess the value of pure CBN ceramics. The resistivity were studied deeply and all the samples possessed excellent resistivity at high temperature (500 °C, ~106 Ω cm; 600 °C, ~105 Ω·cm). The thermal depoling behavior of the ceramics was researched in detail and the doped ceramics exhibited outstanding thermal stability. All the results indicate the (Li, Ce, Y)-substituted CBN ceramics possesses preeminent property, making it promising for application especially in high temperature territories.  相似文献   

20.
Electrical properties of lead-free solid solution ceramics from the Bi0.4871Na0.4871La0.0172TiO3 (BNLT) and BaZr0.05Ti0.95O3 (BZT) system have been improved by a thermal treatment technique. A modified two step mixed-oxide method was employed for the preparation of the (1?x)BNLT–xBZT ceramics, where x=0.06, 0.09, 0.12 and 0.20. After sintering at 1125 °C for 4 h, the BNLT–BZT ceramics were annealed at 825, 925 and 1025 °C. The annealing treatment caused an increase in dielectric constant of BNLT–BZT ceramics with x≤0.09 mol% and with x higher than 0.09 mol% the dielectric value dropped considerably. The ferroelectric properties of all annealed ceramic samples tend to decrease with increasing annealing temperature as confirmed by the slimmer P–E loops. The piezoelectric coefficient (d33) increased with annealing temperatures and a maximum value of ~170 pC/N was obtained from the ceramic samples annealed at 1025 °C with x=0.02.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号