首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigates the removal of the fission products Sr2+, Cs+ and Co2+ in single and binary metal solutions by a sulphate reducing bacteria (SRB) biomass. The effect of initial concentration and pH on the sorption kinetics of each metal was evaluated in single metal solutions. Binary component equilibrium sorption studies were performed to investigate the competitive binding behaviour of each metal in the presence of a secondary metal ion. Results obtained from single metal equilibrium sorption studies indicated that SRB have a higher binding capacity for Sr2+ (qmax = 416.7 mg g?1), followed by Cs+ (qmax = 238.1 mg g?1), and lastly Co2+ (qmax = 204.1 mg g?1). Among the binary systems investigated, Co2+ uptake was the most sensitive, resulting in a 76% reduction of the sorption capacity (qmax) in the presence of Cs+. These findings are significant for future development of effective biological processes for radioactive waste management under realistic conditions.  相似文献   

2.
《Minerals Engineering》2006,19(5):486-490
Conventional treatment methods for arsenic removal from copper smelting wastewaters create sludge that is difficult to handle. Biosorption of arsenic using algae as sorbent is an interesting alternative to the conventional methods.This work shows results from biosorption of arsenic(V) by Lessonia nigrescens at pH = 2.5, 4.5 and 6.5. The adsorption of arsenic could be explained satisfactorily both by the Freundlich and the Langmuir isotherms. Maximum adsorption capacities were estimated to 45.2 mg/g (pH = 2.5), 33.3 mg/g (pH = 4.5), and 28.2 mg/g (pH = 6.5) indicating better adsorption at the lower pH. These values are high in comparison with other arsenic adsorbents reported.The sorption kinetics of arsenic by L. nigrescens could be modelled well by Lagergren’s first-order rate equation. The kinetics were observed to be independent of pH during the first 120 min of adsorption with the Lagergren first-order rate constant of around 1.07 × 10−3 min−1.  相似文献   

3.
This study examines the leaching of copper from waste electric cables by chemical leaching and leaching catalysed by Acidithiobacillus ferrooxidans in terms of leaching kinetics and reagents consumption. Operational parameters such as the nature of the oxidant (Fe3+, O2), the initial ferric iron concentration (0–10 g/L) and the temperature (21–50 °C) were identified to have an important influence on the degree of copper solubilisation. At optimal process conditions, copper extraction above 90% was achieved in both leaching systems, with a leaching duration of 1 day. The bacterial leaching system slightly outperformed the chemical one but the positive effect of regeneration of Fe3+ was limited. It appears that the Fe2+ bio-oxidation is not sufficiently optimised. Best results in terms of copper solubilisation kinetics were obtained for the abiotic test at 50 °C and for the biotic test at 35 °C. Moreover, the study showed that in same operating conditions, a lower acid consumption was recorded for the biotic test than for the abiotic test.  相似文献   

4.
In this investigation the froth zone of an industrial column (4 m “diameter” × 12 m “height”) in rougher circuit was characterized. Experiments were carried out at Miduk copper concentrator, Iran. Miduk is a unique copper processing plant which utilizes columns in rougher circuit. Cleaning and selectivity actions in the rougher froth were illustrated using solids and grade profiles along with RTD data. The impact of froth depth (FD) on overall rate constant (k) and kSb relationship was evaluated. Dependency of overall flotation kinetics on froth depth and gas velocity (Jg) was modeled by k = 4.97(FD)?0.87(Jg)0.80. Froth recovery (Rf) was estimated and modeled in terms of froth residence time of slurry (FRTSlurry) as Rf = Rf,maxexp(?k × FRTSlurry). Finally, the correlation between k, Sb (indicative of the collection zone performance) and FRTSlurry (indicative of the froth zone performance) was modeled by k = 0.02 (FRTSlurry)?0.62(Sb)0.82.  相似文献   

5.
A 10 mm hydrocyclone was operated using a barite suspension with a maximum particle size of dmax = 7 μm. The test rig was equipped with a piston diaphragm pump for pressures up to 60 bar. At 40 bar and 20 °C, cut sizes d50 were obtained down to 0.7 μm; increasing the temperature to 50 °C resulted in d50 values down to 0.5 μm for a throughput of 0.6 m3/h. Another experiment was conducted at 40 bar using a batch hydrocyclone technology. Only the overflow was recirculated to the feed box, whereas the underflow was discharged via a collection box. Increasing the number of recirculations increased the separation of fines in the submicron range. The results showed that after 20 min particles with dmax = 1 μm were obtained in the hydrocyclone overflow. After 120 min, the particles size distribution had a dmax = 0.5 μm and a mean size of d50 = 0.2 μm. This procedure requires high energy consumption and is thus suitable only for fractionating small quantities of particles in the submicron range.  相似文献   

6.
Caro’s Acid (peroxymonosulphuric acid: H2SO5) is a powerful liquid oxidant made from hydrogen peroxide that has been adopted for the detoxification of effluents containing cyanides in gold extraction plants in recent years.The present work reports the findings of a study on the kinetics of aqueous cyanide oxidation with Caro’s Acid. Experiments were conducted in batch mode using synthetic solutions of free cyanide. The experimental methodology employed involved a sequence of two 23 factorial designs using three factors: initial [CN]: 100–400 mg/L; H2SO5:CN molar ratio: 1–1.5–3–4.5; pH: 9–11; each one conducted at one level of Caro’s Acid strength which is obtained with the H2SO4:H2O2 molar ratio used in Caro’s Acid preparation of 3:1 and 1:1. The objective was the evaluation of the effect of those factors on the reaction kinetics at room temperature. Statistical analysis showed that the three investigated variables were found to be significant, with the variables which affected the most being the initial [CN] and the H2SO5:CN molar ratio. The highest reaction rates were obtained for the following conditions: H2SO5:CN molar ratio = 4.5:1; pH = 9; and Caro’s Acid strength produced from the mixture of 3 mol of H2SO4 with 1 mol of H2O2. These conditions led to a reduction of [CN] from an initial value of 400 mg/L to [CN] = 1.0 mg/L after 10 min of batch reaction time at room temperature. An empirical kinetic model incorporating the weight of the contributions and the interrelation of the relevant process variables has been derived as: −d[CN]/dt = k [CN]1.8 [H2SO5]1.1 [H+]0.06, with k = 3.8 (±2.7) × 10−6 L/mg min, at 25 °C.  相似文献   

7.
The aim of this work was to develop a diffuse reflectance methodology for quantifying minerals in powdered iron ores, which is a key quality control requirement for these materials. Selected samples ranging widely in their concentrations of hematite (as specularite and martite), goethite, magnetite, and quartz were collected in mines from the Iron Quadrangle, Minas Gerais State, and also in the Carajás region, Pará State, Brazil. A chemometric analysis based on the concentrations of the different minerals as determined with a combination of conventional methods (chemical analysis, X-ray diffraction, Mössbauer spectroscopy, light-reflected microscopy, and magnetic susceptibility) and the principal components derived from the diffuse reflectance spectra in the visible range was performed. Principal component regression analysis provided successful calibration for the concentrations of goethite (r2 = 0.94; standard error of validation (SEv) = 4.2%) and hematite (r2 = 0.89; SEv = 7.4%), in addition to good estimates for quartz (r2 = 0.83; SEv = 7.4%), specularite (r2 = 0.80; SEv = 11.6%), and martite (r2 = 0.78; SEv = 10.6%). Our results suggest that diffuse reflectance spectroscopy is a promising tool for the simultaneous determination of minerals in iron ores within a few minutes only.  相似文献   

8.
The extraction of titanium (IV) from sulfate, and nitrate solutions has been studied using tri-n-butyl phosphate (TBP) in kerosene. Extraction of titanium was affected by acid concentration over the range of 0.5–4 mol L?1. The titanium distribution coefficient reached a minimum between 1 and 2 mol L?1 acid for both sulfate and nitrate solutions. Third phase formation was observed in the extraction of titanium from acidic media at all condition tested. At the next stage, the stripping of titanium was studied using H2SO4, H2SO4 + H2O2 and Na2CO3. The kinetics of the stripping were very slow for H2SO4. The use of complex forming stripping agents (H2SO4 + H2O2) and Na2CO3 significantly improved the kinetics of stripping. About 98% recovery was achieved by extracting titanium from an aqueous nitrate solution using TBP and stripping with sodium carbonate.  相似文献   

9.
In the present investigation the relationship between collection zone rate constant (kc) and gas dispersion parameters, viz. bubble size (db), superficial gas velocity (Jg), gas hold-up (εg) and bubble surface area flux (Sb) was evaluated. Experiments were conducted in an industrial (4 m in diameter and 12 m high) and a pilot (0.1 m in diameter and 4 m high) flotation column in rougher circuit at Miduk copper concentrator in Iran. Gas hold-up was measured using pressure difference technique and mean bubble sizes were estimated from a drift flux analysis. It was found that the collection zone rate constant was not correlated with db and Jg solely but was linearly dependent on εg and Sb for the range of interest. Collection efficiency (Ek) and floatability factor (P) in the industrial columns were quantified (Ek = 3.1%; P = 7.7 × 10?3). The influence of operating parameters comprising superficial gas velocity, slurry solids% and frother dosage/type on Sb and flotation kinetics was discussed. Analysis of available industrial data suggested that Sb and εg were related by Sb = 4.46εg over the range 30 < Sb < 60 s?1 and 7% < εg < 14%.  相似文献   

10.
A simple method for rapid determination of trace Au in natural water was presented by using UV–vis spectrophotometry after reaction of gold (III) with 3,3′, 5,5′-tetramethylbenzidine hydrochloride (TMBH) in acidic solution. Under the optimum conditions, in a concentration range of 100–2000 μg L?1 of Au (III) a good linear calibration graph was obtained (r = 0.9969, n = 7). The percent relative standard deviation (RSD) for determination of 1000 μg L?1 Au was 10% (n = 3) and limit of detection based on a signal-to-noise ratio (S/N) of 3 (3Sbl) was 50 μg L?1. The proposed method has been successfully applied to the determination of gold spiked and real aqueous samples.  相似文献   

11.
A review of literature data for different types of sulphide concentrates and gold ores has been carried out to examine the impact of host minerals and pH upon gold leaching. Analysis of initial rate data over the first 30–60 min of gold leaching from sulphide concentrates or silicate ores over a range of ammonia, thiosulphate, and copper(II) concentrations, pH (9–10.5) and temperatures up to 70 °C shows the applicability of a shrinking sphere kinetic model with an apparent rate constant of the order kss = 10−6–10−3 s−1. The dependence of apparent rate constant on pH and initial concentrations of copper(II) and thiosulphate is used to determine a rate constant kAu(ρr)−1 of the order 1.0 × 10−4–7.4 × 10−4 s−1 for the leaching of gold over the temperature range 25–50 °C (ρ = molar density of gold, r = particle radius). These values are in reasonable agreement with rate constants based on electrochemical and chemical dissolution of flat gold surfaces: kAu = 1.7 × 10−4–4.2 × 10−4 mol m−2 s−1 over the temperature range 25–30 °C. The discrepancies reflect differences in surface roughness, particle size and the effect of host minerals.  相似文献   

12.
《Minerals Engineering》2006,19(14):1439-1445
The effect of liner/lifter profile on kinetics of batch grinding and the milling capacity in general was assessed using mono-size quartz material of 30 × 40 mesh (−600 + 425 μm) as feed. The liner profiles tested were, (i) bevel with 60° lifter face angle to represent the new liners, (ii) bevel with 45° lifter face angle to represent the worn liners and (iii) worn bevel modified with cone-lifters. The tests were conducted under identical conditions to allow a comparative analysis of the results. In all cases, the breakage followed the first order hypothesis. The experimental size distribution data was well predicted by the S and B model, thus allowing for estimation of breakage and selection parameters (i.e., γ and aT) for the three liner situations tested. The optimised values of the specific rate of breakage, Si for the three liner profiles tested were 0.381, 0.287 and 0.365 min−1, respectively, which clearly indicates the benefit of cone-lifters. The breakage distribution function (Bij) values did not vary significantly with liner profile, which echoes the findings by other researchers.  相似文献   

13.
《Minerals Engineering》2006,19(5):463-470
The possible use of palygorskite clay, mined in the Dwaalboom area of the Northern Province of South Africa, as an adsorbent for the removal of metal ions such as lead, nickel, chromium and copper from aqueous solution, was investigated. In this work, adsorption of these metals onto palygorskite has been studied by using a batch method at room temperature. The results of adsorption were fitted to both the Langmuir and Freundlich models. Satisfactory agreement between experimental data and the model-predicted values was expressed by the correlation coefficient (R2). The Langmuir model represented the sorption process better than the Freundlich one, with correlation coefficient (R2) values ranging from 0.953 to 0.994. The adsorption capacity (Q0) calculated from the Langmuir isotherm was 62.1 mg Pb(II) g−1, 33.4 mg Ni(II) g−1, 58.5 mg Cr(VI) g−1 and 30.7 mg Cu(II) g−1 at a pH of 7.0 at 25 ± 1 °C for a clay particle size of 125 μm. Kinetic investigations were performed to investigate the rate of adsorption of metal ions. The Lagergren’s first-order rate constants were calculated for different initial concentrations of metal ions. In batch mode adsorption studies, removal increased with an increase of contact time, adsorbent amount and solution pH. Adsorption of metals from the single-metal solutions was in the order: Pb > Cr > Ni > Cu. Data from this study proved that metal cations from aqueous solution can be adsorbed successfully in significant amounts by palygorskite. This opens up new possibilities and potential commercial uses in the palygorskite market.  相似文献   

14.
The broad range of complexities in bioleaching includes the use of mixed microbial communities with diversity of species and strains with different windows of operating conditions. Empirical approaches to characterise these currently use cumbersome experimental systems; hence the need to develop a high throughput research tool, analogous to the techniques used in high throughput pharmaceutical research. In this study, a microwell research tool was evaluated as a growth and measurement tool for mixed autotrophic bioleaching cultures. The tool was assessed by comparing its performance to conventional shake flask apparatus. Mixed mesophilic cultures of predominantly Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans were used. Growth and ferrous iron oxidation kinetics were quantified and assessed. Microwell plates performed similarly to conventional shake flasks with respect to growth and iron oxidation kinetics. The microwell plate apparatus was also used as a measurement system in combination with a microwell plate reader (measuring absorbance change at 428 nm over time). Progressive colour change of growth experiments correlated to ferrous iron oxidation within a defined operating window. We conclude that, using this measurement as a proxy for trends iron oxidation, the microwell research tool is well-suited for high throughput scoping studies to map operating windows for different cultures, in both an unadapted and adapted context. This was confirmed through an activity test utilising fluoride as an inhibitor. Where absorbance measurements at 428 nm are used to track oxidation progress, the research tool has limitations with respect to pH (<2.0) and total iron concentration (<8.0 g l1).  相似文献   

15.
Immobilization of a mixed bacterial culture (predominantly Leptospirillum sp.) on mechanically modified graphite surfaces and different types of activated carbon fiber supports (felt and textile; both silicated and non-silicated) was studied experimentally. Maximum cell coverage on graphite samples occurred on a surface roughness of 2.08 μm (3.9 × 104 cells/mm2). In non-silicated samples the activated carbon fiber support with the greatest surface area per gram (felt) lead to the greatest number of immobilized microorganisms over a 10 h period (2.2 × 104 cells/mm2). The silication significantly increased surface area in the fibrous matrix voids and thereby increased the number of immobilized microorganisms on both modified activated carbon felt and fabric. The silicated felt exhibited the greatest number of immobilized Leptospirillum sp. cells of all activated carbon fiber cathodes studied (2.9 × 104 cells/mm2). Physical property and elemental analyses of silicated samples indicated that other methods of augmenting bacterial immobilization should be explored as silication increased electrical resistance of the samples 100 fold. Leptospirillum sp. immobilized on unmodified activated carbon felt yielded the maximum experimentally observed rate of ferrous iron bio-oxidation (~900 mg/L h).  相似文献   

16.
Mineralogical analyses of the saprolitic laterite material have been characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermal analysis, scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX). Results showed that the saprolitic laterite material consists mainly of nickel-substituted lizardite showing the pebble-like morphology and traces of magnetite and phlogopite. Leaching results showed that as much as 84.8% nickel could be leached under the experimental conditions of 10% (v/v) H2SO4, 90 °C reaction temperature, leached within 5 min, particle size d50 = 25 μm, stirring at 500 rpm and liquid to solid ratio 3:1. The kinetics of nickel and magnesium leaching from the saprolitic laterite material have been investigated in a mechanically stirred reactor and the activation energies were determined to be 53.9 kJ mol?1 for nickel and 59.4 kJ mol?1 for magnesium respectively, which are characteristic for a chemical reaction controlled process. The similarity of the activation energies of nickel and magnesium leaching from the saprolitic laterite material by sulphuric acid means that nickel in lizardite is loosely bound within the octahedral layer and almost all of the nickel could be leached simultaneously with magnesium but without complete decomposition of the silicate structure.  相似文献   

17.
A novel hybrid adsorbent (HA) composed of cellulose fiber, activated carbon, and anion exchange resin Dowex 1 × 8 was prepared for the preconcentration and separation of noble metals, namely, gold (Au), palladium (Pd) and platinum (Pt), in geological samples. The optimal experimental parameters, such as flow rate, sample volume and interfering ions, were investigated. The accuracy of the method was confirmed by added/found method for tap and sea water, and evaluated by analyzing certified reference materials with good agreement. Under the optimal experimental conditions, the detection limits (3σ criteria) of the developed technique were 0.008 ng mL−1 (Au), 0.017 ng mL−1 (Pd) and 0.014 ng mL−1 (Pt) and the sample throughput reach to 30 samples every eight hours. Moreover, the adsorption capacity of HA for Au, Pd and Pt was determined to be 48.2, 35.9 and 29.8 mg g−1, respectively.  相似文献   

18.
19.
Stringent environmental legislation and the desire to become zero discharge have motivated mining operations to treat and recycle process water. Cyanidation tailings effluent contains elevated concentrations of cyanide and thiocyanate (SCN), precluding recycling to the BIOX® process without prior treatment to reduce SCN to below 1 mg/l. The current study investigated the effect of SCN on individual microbial species. Iron oxidation by Leptospirillum ferriphilum was not affected by SCN concentrations below 0.5 mg/l, with concentration dependent inhibition observed between 0.75 and 1.25 mg/l and complete inhibition of iron oxidation above 1.25 mg/l. Sulphur oxidation by Acidithiobacillus caldus showed a similar trend, with limited inhibition below 1.25 mg/l and almost complete inhibition above 1.25 mg/l. Repeated sub-culturing at low concentrations induced adaptation, with adapted cultures currently growing at SCN concentrations of 7 mg/l. The phenomenon of inhibition at low concentration, with subsequent adaptation was repeated in stirred tank reactors, leaching a pyrite/arsenopyrite concentrate.  相似文献   

20.
Nickel and cobalt acid leaching from a low-grade South African saprolitic laterite using sulphuric acid was studied. Ore characterisation was performed by XRD and XRF. Batch agitation leaching tests were conducted at atmospheric pressure investigating main parameters: particle size and percent solids at 25 °C and 90 °C. Ore characterisation showed that the ore is a saprolitic laterite with nickel present in lizardite. Leaching tests showed that nickel and cobalt could be leached from the ore at atmospheric pressure. Nickel was found to be more leachable from the coarser −106 + 75 μm fraction, with 98% Ni being extracted at 90 °C after 480 min. Cobalt was not favoured by variation in particle size and increased percent solids. Increasing ore percent solids improved nickel extraction at 25 °C however at 90 °C extraction decreased due to a diffusion layer build-up as a result of amorphous colloidal silica. The co-dissolution of magnesium and iron was elucidated. Nickel leaching data at increased temperature and percent solids fit the shrinking core model equation, kdt = 1−2/3x  (1  x)2/3 showing that nickel leaching reaction was diffusion controlled under the set conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号