首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杜洋  韩一鸣  王静  梁森 《润滑与密封》2021,46(10):37-44
采用光干涉技术在球-盘点接触试验台上进行间歇运动条件下的润滑脂膜厚分布研究,测量卷吸速度和停歇时间影响下的中心膜厚和最小膜厚的变化。使用Centoplex3润滑脂,在充分供脂的情况进行不同停歇时间和不同卷吸速度下的对比实验研究。研究发现,增稠剂纤维团存在于减速阶段末期及停歇阶段和加速阶段前期,对膜厚造成一定程度的波动;随着停歇时间的增加,纤维团聚集程度降低并且尺寸减小,但始终有纤维团存在于接触区;在非停歇阶段的相同瞬时,卷吸速度越大,中心膜厚和最小膜厚就越大,而在停歇阶段的中心膜厚与最小膜厚变化则不遵循此规律;增稠剂纤维团的随机存在会在一定程度上增大中心膜厚与最小膜厚,间歇运动中采用脂润滑方式比油润滑更为有利。  相似文献   

2.
为研究中低速、中等载荷工况下不同供油条件对接触区润滑特性的影响,假设润滑剂分别为Newton流体和Ree-Eyring流体,建立考虑供油条件的线接触热弹流润滑模型。采用Elrod算法,将入口供油量作为输入参数,求解接触区油膜压力、膜厚和油膜温度的完全数值解。结果表明:随着入口供油量的降低,接触区入口气液界面位置逐渐向Hertz接触区移动;相同供油条件下,随着速度和载荷的增大,入口气液界面位置逐渐向Hertz接触区移动,乏油程度增加;随着供油量的增加,中心膜厚和最小膜厚也相应增加,且中心膜厚更易受供油量的影响;在乏油润滑条件下,Newton流体计算得到的油膜温度明显高于Ree-Eyring流体;随供油量的增加,Ree-Eyring流体的油膜最高温度增加,而Newton流体的油膜最高温度有先降低后增加的趋势;对于给定的工况,当入口等效供油膜厚接近该种工况下接触区处于充分供油状态下的最小膜厚时,接触区内的最高温升是相对最小的。  相似文献   

3.
针对改善点接触高副接触零件润滑状况的现实问题,对赫兹接触区内的润滑油膜进行了研究。耦合了接触力学和流体动力润滑方程,采用多重网格法,使用Fortran语言编程求解,对等温点接触弹流润滑方程组进行了数值计算,从而得到了不同椭圆率Ke、载荷w、卷吸速度u和粘度η_0等参数影响下的膜厚和压力变化曲线;通过研究膜厚和压力变化过程中最小膜厚和二次压力峰的位置,以及膜厚和压力的变化程度,得到了影响赫兹接触区内油膜变化规律的因素,并进行了分析和阐述。研究结果表明:接触椭圆随着椭圆率、载荷、卷吸速度和粘度等参数的改变而发生变化,接触椭圆的改变不同程度上影响着润滑油的膜厚和压力;在一定范围内增大椭圆率、卷吸速度和粘度及减小载荷,有利于改善润滑性能。  相似文献   

4.
利用光干涉测量技术,测量了滚子-盘有限长线接触副的润滑油膜形状和厚度,研究了滚子副的润滑状态随载荷、速度转变的规律。结果表明,接触区卷吸速度增加或载荷减小,使得滚子-盘接触副润滑状态逐渐由弹流润滑转变为流体动力润滑,且在两种润滑状态转变过程中存在过渡状态;由载荷变化引起流体动力润滑状态转变为弹流润滑状态过程中,接触区表面发生了弹性变形,使得接触区的油膜厚度增加。速度变化使滚子-盘接触处于流体动力润滑状态时,油膜出口颈缩消失,最小膜厚位置由出口颈缩处移至接触区中心,油膜光干涉图关于滚子轴线对称。  相似文献   

5.
运用接触电阻法分别研究外载荷、滑动速度对球-盘点接触摩擦副润滑状态的影响规律.试验结果表明,接触电阻值随载荷的增大逐渐减小后趋于稳定,随滑动速度的增大逐渐增大但当载荷较大、速度增大到某一值时有减小的趋势;建立接触电阻与膜厚比的关联曲线,能够快速、直观地判定边界润滑状态和混合润滑状态之间的过渡转换,并能判断出混合润滑状态中起主导作用的润滑状态.  相似文献   

6.
以柔性轴承为研究对象,基于赫兹接触理论和弹性薄壁圆环理论,建立柔性轴承等温椭圆点接触弹流润滑模型,对滚珠及内外圈滚道的接触区受载荷最大位置处进行弹流润滑数值分析;计算危险点的曲率半径、速度及载荷,分析载荷及速度变化对该位置润滑性能的影响。研究结果表明:套圈变形使得润滑接触区峰值压力增大、膜厚减小;柔性轴承弹流润滑油膜最小膜厚及中心膜厚均随载荷的增大而减小,油膜压力随载荷的增大而变大,表明载荷增大对柔性轴承的承载有一定影响;随转速的增大最小膜厚及中心膜厚均增大,表明在一定范围内,适当提高转速能够改善润滑性能。  相似文献   

7.
建立了三角形周期脉冲载荷作用下轧辊轴承弹流润滑数学模型,利用压力求解的多重网格法及弹性变形的多重网格积分法数值模拟了连续三角形周期脉冲载荷作用下乳化液润滑膜压力及膜厚的分布,分析了三角形周期脉冲载荷作用下润滑膜中心压力、中心膜厚及最小膜厚随时间变化的特性.计算结果表明,润滑膜中心压力的变化周期同脉冲周期一致,中心膜厚的变化滞后于脉冲和中心压力的变化;随三角形周期脉冲幅值的增大,中心压力和中心膜厚的振幅均增大,周期脉冲幅值越大,中心压力值越大,中心膜厚上下波动越大;当周期脉冲脉宽变大时,中心压力和中心膜厚的波动脉宽也变大,0.03 s后的中心膜厚上下波动范围变化微小.  相似文献   

8.
建立无限长滚子与平面的线接触等温弹流脂润滑模型,采用多重网格法研究纯滚工况下载荷和卷吸速度对润滑油膜特性的影响;采用多功能双色光弹流润滑油膜测量实验台,在相应工况下进行变载荷和变速度实验研究。数值模拟结果表明,较大的载荷可以获得更大的压力和更小的膜厚,较大的速度则主要提升了二次压力峰并增大了膜厚。实验结果表明:随着载荷的增大,整体膜厚、最小膜厚和中心膜厚均先增大后减小,但载荷较小时出现了最小膜厚和中心膜厚实验值和理论模拟值不一致的变化趋势,这可能是数值模拟分析时稳态假设与实际润滑脂流变特性、时变特性及润滑机制不符造成的;随着速度的增大整体膜厚、最小膜厚和中心膜厚都线性增大,且实验值与理论模拟值有较高的一致性。  相似文献   

9.
为提高齿轮、圆柱滚子轴承等线接触副零件的润滑性能,有必要研究供油条件对其混合润滑特性的影响。基于平均流量模型,建立考虑供油条件的线接触非牛顿热混合润滑模型。将入口供油量作为控制乏油程度的参数,同时考虑膜厚比(最小膜厚与粗糙度的比值)与粗糙峰接触载荷比(粗糙峰接触载荷与总载荷的比值)来判断润滑状态,研究供油量、速度、接触副材料和环境黏度对混合润滑性能的影响。结果表明:随着供油量的增加,膜厚比增加,粗糙峰接触载荷比减小,最小膜厚与中心膜厚逐渐增大,平均摩擦因数逐渐减小,油膜最高温度逐渐增加,但最终都趋于稳定值;对于3种不同接触副(钢-钢、钢-Si3N4和Si3N4-Si3N4),钢-钢接触副的总压力与油膜温度最低,Si3N4-Si3N4接触副的总压力与油膜温度最高;在充分供油时,Si3N4-Si3N...  相似文献   

10.
将三叉杆联轴器圆柱滚子与滑块槽之间的运动简化为圆柱与无限大平面之间的运动,结合联轴器运转过程中的非稳态效应,建立时变挤压效应下线接触热弹流脂润滑的数值计算模型。采用多重网格法求解得到压力、膜厚和润滑油膜平均温升等润滑指标的瞬态解,并与稳态值进行对比分析。结果表明,当时变效应处于低频状态下,润滑油膜特性的瞬态解与稳态解相差不大,但处于高频状态下时,油膜厚度整体小于稳态解,且高频时的温升现象尤其明显;一个载荷冲击周期内,高频解与低频解的分布基本相同,但高频时的膜厚明显低于低频解。  相似文献   

11.
通过将电容法膜厚测量仪耦合在球-盘点接触光干涉试验台上,搭建油膜厚度测量装置。通过对目标球-盘接触副采取合理的导电措施以及台架绝缘设施来保证润滑油膜电信号的提取,该装置可实现相同工况下膜厚度值及其相应的电信号(如油膜分压值和电容值)。在纯滚动接触情况下,分别对油润滑和脂润滑下的油膜进行测量,得到光干涉膜厚、油膜分压值和电容值随随卷吸速度的变化规律,并分析接触副电容随膜厚的变化。结果显示,随卷吸速度的增加光干涉膜厚升高而油膜分压值和电容值减小,电容值随着膜厚的增加而逐渐降低。实验结果初步验证了该测量系统的可行性,可为后续实际接触副内润滑状态的评估提供方案。  相似文献   

12.
点接触弹流润滑供油条件退化的乏油分析   总被引:1,自引:0,他引:1  
在点接触弹流润滑中,如果不能及时补充新油,则接触区的供油条件会随着润滑次数而退化。分析了供油油膜厚度、中心膜厚、最小膜厚和润滑油膜压力区形成位置与润滑次数的关系。结果表明:润滑开始时,由于供油油膜厚度较大,系统处于充分供油状态;随着润滑次数的增加,有一部分油从两侧泄漏,系统逐渐转到乏油状态,供油油膜厚度、中心膜厚和最小膜厚均逐渐变小,压力区形成位置则逐渐向Hertz接触区靠近;最终供油油膜厚度、中心膜厚和最小膜厚趋于定值,压力区趋于Hertz接触区,从而达到一种稳定乏油状态。  相似文献   

13.
工程中大多数滚动轴承采用脂润滑,但是润滑脂具有非牛顿体特性和润滑过程的时效性,较难准确地建模分析其润滑特性。通过总结脂润滑弹流的理论分析与实验研究进展,基于Ostwald本构模型建模,用Gauss-Seidel迭代法和Jacobi双极子迭代法分析脂润滑条件下的润滑膜厚度分布和压力分布;探讨不同流变指数、不同载荷和不同卷吸速度对脂润滑弹流特性的影响。结果表明:载荷和卷吸速度对润滑脂膜厚和压力的影响与油润滑相似;稳定后的脂润滑膜厚接近相应工况基础油润滑膜厚的1/2;润滑脂的非牛顿特性越显著,则膜厚越小,压力分布越接近Hertz接触应力分布。  相似文献   

14.
建立具有中央凸起的点接触弹流润滑控制方程,并采用多重网格法及多重网格积分法进行数值求解;比较有凸起表面和光滑表面下的压力及膜厚曲线,讨论载荷及卷吸速度对压力分布及油膜形状的影响。结果表明:具有中央凸起时在接触中心附近,压力经历了急剧升高、骤然下降、再升高的一个波动过程;最小膜厚出现在接触中心,且接触中心前面产生了一个凹陷;增大卷吸速度或减小载荷都使得膜厚曲线整体升高,最小膜厚随着卷吸速度的增大而增大,载荷几乎不影响最小膜厚;载荷增大使得最大压力增大,但中心局部压力波动范围变化很小;增大卷吸速度使得最大压力和中心局部压力波动范围都减小。  相似文献   

15.
数值模拟链传动中销轴与套筒之间的定载荷和变载荷弹流润滑接触问题,套筒相对于销轴做纯滑动往复运动。定载荷是假定往复运动过程中载荷恒定不变;变载荷是假定链节在啮入和啮出链轮过程中存在的冲击载荷按正弦函数规律变化。比较在定载荷和变载荷加载条件下线接触往复运动工况的弹性润滑油膜变化情况,分析在动载荷加载条件下不同行程长度对弹性流体动力润滑特性的影响。研究发现,动载荷对油膜的压力、膜厚影响较大:随着动载荷的增加,油膜中压力急剧增大,膜厚减小;但加载方式对摩擦因数的影响不大;在相同的加载方式下,随着行程长度的增加,油膜压力减小,中心膜厚和最小膜厚显著增加。  相似文献   

16.
角接触球轴承中的滚动体产生自旋运动,自旋状态下的弹流润滑(Elastohydrodynamic lubrication,EHL)性能对轴承的力学特性产生一定的影响。建立了考虑自旋运动的EHL模型,研究自旋运动对载荷分布和油膜形状的影响。利用刚体中心膜厚与接触载荷之间的关系,实现了EHL模型与轴承力学模型之间的耦合,从而提出了考虑自旋状态下弹流润滑的球轴承力学特性计算方法。与传统的基于Hertz接触理论的计算方法进行了对比分析,结果显示两者在接触载荷和接触角的计算方面比较接近,但对轴承变形、接触位移及膜厚分布的计算差别较大,基于EHL计算方法所得的轴承变形小于基于Hertz接触方法的计算结果,且转速越高差别越明显,考虑自旋运动后最小膜厚不再随轴承转速升高而单调增长,当转速达到一定程度后最小膜厚开始下降。  相似文献   

17.
利用弹性流体动力润滑和流变学理论对滚柱轴承离合器的润滑脂膜厚度进行了分析,给出了滚柱轴承离合器的润滑脂膜厚度的计算公式,建立了最小润滑脂膜厚度的计算程序并进行了实例计算,分析了相关参数对脂膜厚度的影响,分析表明:滚子轴线与滚道轴线夹角增大或者外加载荷增大,脂膜厚度会减小;滚子个数增加或滚子长度增加或转速增大,脂膜厚度会增加;润滑脂类型不同,相应的膜厚也有所不同.  相似文献   

18.
基于高速铁路客车轴箱系统多界面接触力学分析模型,在轴箱轴承工况条件下,分析轴箱轴承滚动体与内、外圈间的接触载荷分布情况;建立高速铁路客车轴箱双列圆锥滚子轴承脂润滑弹流模型,并采用有限差分法数值解法。数值计算结果与最小膜厚公式获得的最小膜厚度进行比较,而最大润滑压力与相应的赫兹应力进行了比较。结果表明,在给定运行工况条件下,随着运行速度的增大,轴承滚道润滑接触形成的油膜压力减小,油膜增大;而当轴承载荷增大时,其油膜厚度减小,润滑压力增大。  相似文献   

19.
基于拟动力学的航空发动机主轴滚子轴承热弹流润滑分析   总被引:3,自引:2,他引:1  
以D1842926航空发动机主轴滚子轴承典型工况为算例,基于拟动力学分析结果,获得滚动体与套圈之间的接触微区运动和受力状态,分别用Hamrock-Dowson(H-D)拟合公式,Wilson-Sheu(W-S)热修正公式和热弹流数值法得到最小膜厚,并与试验测试数据进行了对比,结果表明,H-D最小膜厚误差非常大,W-S热修正最小膜厚比H-D误差要小,但误差仍在40%以上,文中数值结果与试验数据较为一致,误差10%以内;对比不同速度下三种算法的最小膜厚分布,低速时三者较为一致,随着速度的提高,H-D最小膜厚误差越来越大,而W-S最小膜厚在速度增大到一定程度后反而降低;随着径向载荷的增大,润滑膜压力增大,膜厚减小,两端的压力略高于中间;随着转速增大,润滑膜膜厚增大,压力基本没有变化。  相似文献   

20.
在弹性流体动力润滑中,有时会出现速度、载荷、曲率半径同时随时间变化的工况.针对这类问题,选取一种椭圆凸轮,利用多重网格技术对椭圆凸轮/平底推杆副的线接触弹流润滑问题进行了数值仿真,给出了一个周期中压力和油膜厚度的变化情况.同时分析和比较了在不同工况下,中心压力和最小膜厚随时间的变化.数值计算结果表明:尽管在一个周期内,大部分瞬时的最小膜厚和中心压力的计算值与准稳态结果比较接近;但是在两表面速度反向运动期间,膜厚的计算值与准稳态结果存在着较大差异,说明挤压效应不可忽略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号