首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《Soils and Foundations》2021,61(6):1699-1707
Recently, the capture of carbon dioxide (CO2) using alkaline waste and byproducts has garnered considerable interest. Construction sludge may be categorized as alkaline waste, as it often exhibits high alkalinity during its generation or intermediate treatment. Hence, researchers have attempted to accelerate pH neutralization and recycle alkaline construction sludge by curing it under a high CO2 concentration. By exposing concentrated CO2 gas to an alkaline sludge, cement hydrates such as calcium hydroxide and calcium–silicate–hydrate gels form calcium carbonate (CaCO3). Subsequently, the generation of CaCO3 is expected to reduce the pH of the sludge. However, the amount of CO2 captured in sludge has not been investigated extensively, unlike those of other alkaline wastes. Therefore, the amount of CO2 captured in alkaline sludge that is associated with pH neutralization is evaluated in this study. It is demonstrated that accelerated carbonation tests using a CO2 incubator and carbonate content evaluation tests based on the gas pressure method successfully reveal the amount of CO2 captured in the alkaline sludge that is associated with pH neutralization. Additionally, the test results show that the amount of mCO2 (i.e., the amount of CO2 captured per 1 g of dry mass of alkaline sludge) increases with ΔpH (ΔpH is the difference between the initial pH and the pH after the alkaline sludge is neutralized). A maximum of 0.021 g of CO2 is captured per 1 g of dry mass of alkaline sludge when the addition ratio of quicklime AQL = 3% and 0.040 g when AQL = 6%. The CO2 capture ratio mCO2/mCO2max, which represents the ratio of CO2 captured in the sludge to the maximum capturing capacity, increases with ΔpH. CO2 capture ratios of up to 90.0% and 84.9% are recorded when AQL = 3% and AQL = 6%, respectively. It is discovered that a higher AQL results in a higher mCO2. Moreover, the test results indicate that a higher AQL causes a more significant change in the CO2 capture ratio, even when the pH decreases slightly.  相似文献   

2.
《Soils and Foundations》2021,61(5):1273-1286
Construction sludge frequently has high alkalinity after its generation or during the intermediate treatment process. The aim of this study is to experimentally investigate the potential of combining accelerated carbonation and a paper sludge ash-based stabilizer (PSAS) to neutralize the alkalinity of construction sludge in a short period and to improve its strength for use as a recycled material. The experimental results indicate that the addition of a PSAS significantly granulated the alkaline sludge, and once granulated, the PSAS successfully accelerated the pH neutralization of the alkaline sludge. It was also found that the decrease in dry density ρd and the degree of saturation Sr of the PSAS-treated sludge was able to reduce the period required for the pH neutralization, tN. The decrease in ρd is thought to allow fresh CO2 gas to penetrate the specimen more easily. However, if Sr is below a certain limit, it does not strongly facilitate the reduction of tN. This implies that pH neutralization cannot be accelerated when the amount of water in the sludge is below a certain level. Moreover, it was found that mean particle diameter D50 also affected tN. The strength development of the PSAS-treated sludge was evaluated using a series of cone index tests. It was found that the strength of the alkaline sludge without the PSAS was significantly decreased by accelerated carbonation, but was significantly increased even after accelerated carbonation when the PSAS was present. Due to the porosities of the remaining PS ash particles, most of the contribution of the water absorption and retention performance of the PSAS to the strength development of the PSAS-treated sludge was secured after accelerated carbonation. In addition, the granulated particles of the PSAS-treated sludge retained their granular shape to some extent. Therefore, it is presumed that the friction and interlocking of the particles did not decrease significantly. It was also found that, after carbonation, the qc of the PSAS-treated sludge increased more rapidly than that of the alkaline sludge without the PSAS. A further detailed examination of the test results showed that under air-curing conditions, the qc of the treated sludge with accelerated carbonation increased relatively gradually compared to that of the treated sludge without accelerated carbonation.  相似文献   

3.
《Soils and Foundations》2023,63(4):101334
In this study, a novel testing method was developed to evaluate the water absorption and retention of waste-based stabilizers using suction filtration. Suction filtration was seen to remove most of the unabsorbed and unretained water from the waste-based stabilizer without losing any waste-based stabilizer particles. Therefore, oven-drying of the wet stabilizer, which can deteriorate the stabilizer, was not necessary. In addition, a formula was introduced to estimate the residual free water in the stabilizer after suction filtration based on the particle size. This estimate was used as a correction to determine the water absorption and retention rate (Wab) of the stabilizer. Subsequently, newly developed tests were conducted on fly ash (FA), a paper sludge ash-based stabilizer (PSAS), biomass ash (BMA), and the PSAS–BMA hybrid to evaluate Wab. The results show that the PSAS exhibited the highest Wab, followed by the BMA and FA. This is attributed to the CaO content of each stabilizer, which may have initiated hydration reactions. The Wab of the PSAS–BMA hybrid was similar to that of the PSAS, which is attributed to the synergistic effects of the components of each type of waste. Finally, the strength development of the FA, PSAS, BMA, and PSAS–BMA hybrid-treated clays was investigated via cone index tests. In addition to the stabilizer addition ratio (A), the Wab of the stabilizers is suggested to be an essential indicator for predicting the strength development of clays treated with waste-based stabilizers. Parameter β, which is the product of Wab and A, governs the cone index qc of the treated clays instead of A and Wab. Thus, the modified water content, w*, which considers the absorbed and retained water as a solid instead of a liquid, was applied to the cone index test results. The results show that the qc of the treated clays is more correlated to w* than to the measured water content. An empirical relationship for predicting cone index qc using w* was also proposed.  相似文献   

4.
《Soils and Foundations》2022,62(6):101239
Construction sludge generated from underground and pile construction works frequently appears in a liquid state. For its utilization as a construction geomaterial, it can be improved by mixing in cement or lime. The target strength can be achieved relatively easily by adjusting the amount of cement or lime added to the sludge. However, this type of chemical treatment is associated with high alkalinity, which causes environmental concerns associated with alkali leaching. In this study, therefore, the accelerated carbonation of alkaline construction sludge through treatment with a paper-sludge ash-based stabilizer (PSAS) was experimentally attempted to neutralize the pH. The alkaline sludge treated with the PSAS was exposed to pure CO2 gas to accelerate the carbonation. The effects of granulation via crumbling prior to the accelerated carbonation on the pH neutralization period were analyzed from the test results. It was observed that crumbling the sludge prior to the CO2 gas exposure accelerated the pH neutralization. These results suggest that a short pH neutralization period can be achieved by reducing the particle size. Therefore, the effect of the particle size of the PSAS-treated sludge on the pH neutralization period was also investigated. The results showed that the pH neutralization period decreased with an increasing particle size. However, it was also observed that, when the addition ratio of the PSAS was increased, the difference in the pH neutralization period induced by the change in particle size became less significant.  相似文献   

5.
Lime is a preferred precipitant for the removal of heavy metals from industrial wastewater due to its relatively low cost. To reduce heavy metal concentration to an acceptable level for discharge, in this work, fly ash was added as a seed material to enhance lime precipitation and the suspension was exposed to CO2 gas. The fly ash-lime-carbonation treatment increased the particle size of the precipitate and significantly improved sedimentation of sludge and the efficiency of heavy metal removal. The residual concentrations of chromium, copper, lead and zinc in effluents can be reduced to (mg L−1) 0.08, 0.14, 0.03 and 0.45, respectively. Examination of the precipitates by XRD and thermal analysis techniques showed that calcium-heavy metal double hydroxides and carbonates were present. The precipitate agglomerated and hardened naturally, facilitating disposal without the need for additional solidification/stabilization measures prior to landfill. It is suggested that fly ash, lime and CO2, captured directly from flue gas, may have potential as a method for wastewater treatment. This method could allow the ex-situ sequestration of CO2, particularly where flue-gas derived CO2 is available near wastewater treatment facilities.  相似文献   

6.
The introduction of acid-tolerant heterotrophic microorganisms into sludge bioleaching systems has been proven effective in improving sludge bioleaching processes, and such positive effect is mainly attributed to the biodegradation of low molecular weight organic acids or sludge dissolved organic matter (DOM) toxic to Acidithiobacillus species by the heterotrophic microorganisms introduced. Here we report that elevated dissolved CO2 concentration and resulting extracellular polymeric substances (EPS) in bioleach solution due to the incorporation of heterotrophic microorganisms also play important roles in improving sludge bioleaching. It was found that in tannery sludge bioleaching system coinoculated with Rhodotorula mucilaginosa R30 and Acidithiobacillus species, dissolved CO2 concentration in bioleach solution can be elevated from 0.23-0.54 mg/L to 0.76-1.01 mg/L compared to the control inoculated only with Acidithiobacillus species. Correspondingly, the distinct degradation of sludge DOM was also observed in this experiment. It was experimentally demonstrated that the accumulation of CO2 did greatly enhance the growth of Acidithiobacillus thiooxidans and the decrease rate of pH in the medium. In addition, EPS derived from R. mucilaginosa R30 could bind readily Fe3+ in bioleach solution with maximum binding capacity (MBC) of 0.82 mg Fe3+ by per mg DOC of EPS secreted and the oxidization activity of EPS-bound Fe3+ was decreased but not totally inhibited, indicating that the formation of soluble EPS-Fe(III) complexes enhances, to a certain extent, bioleaching efficiency due to maintaining Fe3+ level in solution by inhibiting Fe precipitation occurrence.  相似文献   

7.
In an attempt to reduce environmental impact, paper sludge ash (PS ash) has recently been studied for its complementary reuse with cement for soil stabilization. In order to establish the optimal mixture design for combining PS ash and cement in soils, a detailed investigation into the stabilizing mechanism is required. To assess the combined effects of PS ash and cement on the strength development of stabilized clay soil, referred to as PS ash–cement-treated clay, a new critical parameter, the unabsorbed and unretained clay-water/cement ratio W*/C, was proposed. To determine W*/C, a new testing method for evaluating the water absorption and retention performance of PS ash was developed. It was revealed that the water absorption and retention rate Wab of PS ash increased with curing time. Unconfined compression tests conducted on the PS ash–cement-treated clay with various water-cement–PS ash mixture proportions and different curing times affirmed that the strength development was fundamentally governed by the parameter W*/C. This suggests that the water absorption and retention rate Wab obtained by the developed method is an essential material parameter in the mixture design for the PS ash–cement-treated clay. It was also found that the effect of the hybrid treatment method, which uses both cement and PS ash, was better than that of the method which uses cement alone, particularly under high W*/C conditions. This indicates that the water absorption and retention performance of PS ash can be fully utilized when the mixture has sufficient unabsorbed and unretained water for cement hydration.  相似文献   

8.
Electrochemical (EC) residual disinfection of Escherichia coli (E. coli) in the presence and absence of primary sludge particulates (PSPs) was studied. The kinetics followed a first-order rate law. When PSPs were absent, the EC residual disinfection rate coefficient (k) increased linearly with EC pretreatment energy (EC, 0–0.63 kWh/m3). However, with 143 mg PSPs/L, k first increased linearly with EC (0–0.28 kWh/m3) and then decreased linearly with EC (0.28–0.42 kWh/m3). H2O2 was detected during EC pretreatment in PSPs-free samples and the H2O2 concentration (CH) increased with EC (0–0.83 kWh/m3) linearly. Chloride was detected in PSPs aqueous samples (143 mg PSPs/L) and its concentration (CC) changed during EC pretreatment: initially, a decrease of CC was observed when EC increased from 0 to 0.28 kWh/m3, followed by an increase of CC when EC increased 0.28–0.42 kWh/m3. In both cases, k correlated to the initial post-EC chloride concentration (CCI) in an inverse linear relationship. This two-stage change of CC and k was caused by a combination of two reactions: anodic oxidation of chloride and the reaction of chloramines with excess chlorine. This paper explains the mechanisms underlying EC residual disinfection in the presence and absence of PSPs, and proposes a feasible strategy for EC disinfection when PSPs are present, an approach that could be useful in the treatment of combined sewage overflow (CSO).  相似文献   

9.
Addition of different forms of nitrogen fertilizer to cultivated soil is known to affect carbon dioxide (CO2) and nitrous oxide (N2O) emissions. In this study, the effect of urea, wastewater sludge and vermicompost on emissions of CO2 and N2O in soil cultivated with bean was investigated. Beans were cultivated in the greenhouse in three consecutive experiments, fertilized with or without wastewater sludge at two application rates (33 and 55 Mg fresh wastewater sludge ha− 1, i.e. 48 and 80 kg N ha− 1 considering a N mineralization rate of 40%), vermicompost derived from the wastewater sludge (212 Mg ha− 1, i.e. 80 kg N ha− 1) or urea (170 kg ha− 1, i.e. 80 kg N ha− 1), while pH, electrolytic conductivity (EC), inorganic nitrogen and CO2 and N2O emissions were monitored. Vermicompost added to soil increased EC at onset of the experiment, but thereafter values were similar to the other treatments. Most of the NO3 was taken up by the plants, although some was leached from the upper to the lower soil layer. CO2 emission was 375 C kg ha− 1 y− 1 in the unamended soil, 340 kg C ha− 1 y− 1 in the urea-amended soil and 839 kg ha− 1 y− 1 in the vermicompost-amended soil. N2O emission was 2.92 kg N ha− 1 y− 1 in soil amended with 55 Mg wastewater sludge ha− 1, but only 0.03 kg N ha− 1 y− 1 in the unamended soil. The emission of CO2 was affected by the phenological stage of the plant while organic fertilizer increased the CO2 and N2O emission, and the yield per plant. Environmental and economic implications must to be considered to decide how many, how often and what kind of organic fertilizer could be used to increase yields, while limiting soil deterioration and greenhouse gas emissions.  相似文献   

10.
11.
《Fire Safety Journal》2004,39(5):375-382
A “chemical” flame height has been defined from the ratio of CO to CO2 yields, yCO/yCO2, and has been shown to be functionally identical with previous results based on flame luminosity. The chemical flame heights have been determined for propane and acetylene data for fire Froude numbers, Q*, ranging from 0.1 to 60,000. The functional dependence of Zf/D on Q* was found to be in excellent agreement with previous luminous flame height correlations. It was thus concluded that the present methodology can be used to accurately quantify the luminous flame height for well-ventilated diffusion flames of surface fires.  相似文献   

12.
In a previous laboratory experiment, extracts of neem (Azadirachta indica A. Juss.) and Gliricidia sepium Jacquin, locally known as mata-raton, used to control pests on crops, inhibited emissions of CO2 from a urea-amended soil, but not nitrification and N2O emissions. We investigated if these extracts when applied to beans (Phaseolus vulgaris L.) affected their development, soil characteristics and emissions of carbon dioxide (CO2) and nitrous oxide (N2O) in a greenhouse environment. Untreated beans and beans planted with lambda-cyhalothrin, a commercial insecticide, served as controls. After 117 days, shoots of plants cultivated in soil amended with urea or treated with lambda-cyhalothrin, or extracts of neem or G. sepium were significantly higher than when cultivated in the unamended soil, while the roots were significantly longer when plants were amended with urea or treated with leaf extracts of neem or G. sepium than when treated with lambda-cyhalothrin. The number of pods, fresh and dry pod weight and seed yield was significantly higher when bean plants were treated with leaf extracts of neem or G. sepium treatments than when left untreated and unfertilized. The number of seeds was similar for the different treatments. The number of nodules was lower in plants fertilized with urea, treated with leaf extracts of neem or G. sepium, or with lambda-cyhalothrin compared to the unfertilized plants. The concentrations of NH4+, NO2 and NO3 decreased significantly over time with the lowest concentrations generally found at harvest. Treatment had no significant effect on the concentrations of NH4+ and NO2, but the concentration of NO3 was significantly lower in the unfertilized soil compared to the other treatments. It was found that applying extracts of neem or G. sepium leaves to beans favored their development when compared to untreated plants, but had no significant effect on nitrification in soil.  相似文献   

13.
As part of the studies to elucidate the environmental consequences from bacteriostat usage the extent of biodegradation of 3,4,4′-trichlorocarbanilide, TCC®, in sewage systems was examined. TCC samples uniformly labeled in either the p-chloroaniline ring (14C PCA TCC) or the dichloroaniline ring (14C DCA-TCC) were monitored in activated sludge systems by measurements of 14CO2 evolution. As was expected, the p-chloroaniline (PCA) ring of TCC was more rapidly degraded than the dichloroaniline (DCA) ring. In a continuous flow activated sludge system (10 h retention time, 200 μg1−1 TCC) acclimation to primary biodegradation was readily gained. 14CO2 evolution from 14C PCA TCC was consistent with complete metabolism of the PCA ring while that from 14C-PCA-TCC indicated about 50% biodegradation of the DCA ring. Analysis of effluents from continuous flow activated sludge units established that TCC undergoes primary biodegradation to its chloroaniline components which are in turn biodegraded.  相似文献   

14.
This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes (13C and 14C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4–14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88–98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39–65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29–50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4–6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions.  相似文献   

15.
Aquatic plants have been used as hydrological tracers in groundwater fed river systems. In nature, patterns in plant distribution have been attributed to ammonium (NH4) toxicity and phosphate (PO4) limitation, while some laboratory studies have focused on the role of the partial pressure of CO2 (pCO2). The aims of this study were (i) to test whether plant distribution was more related to pCO2 than NH4 and PO4 in nature, (ii) to develop and test the predictive power of new plant indices for pCO2, NH4 and PO4, and (iii) to test the potential causality of the relationships using species eco-physiological traits. These tests were carried out with field data from the Rhine, Rhône and Danube river basins. Species composition was best related to the effect of pCO2. The pCO2 plant index was well calibrated (r= 0.73) and had the best predictive power (r= 0.47) of the three indices tested on independent datasets. The plant-pCO2 relationship was supported by a biological mechanism: the ability of strictly submerged species of aquatic vascular plants to use HCO3 under low pCO2. This was not the whole story: the effects of pCO2, NH4 and PO4 on plant distribution were partially confounded and interacted all together with temperature. However, neither NH4 toxicity nor P limitation could be asserted using species eco-physiological traits. Moreover, the predictive power of the NH4 and PO4 plant indices was not as strong as pCO2, at r= 0.24 and r= 0.27, respectively. Other potentially confounding variables such as spatial structure, biotic and physical factors were unlikely to confound the findings of this study.  相似文献   

16.
《Soils and Foundations》2021,61(5):1370-1385
In those cases where construction-generated soils with high water contents are used as filling or embankment materials, it is sometimes difficult to satisfy the specified compaction degrees. Recently, soil stabilization using a paper sludge ash-based stabilizer (PSAS) has been developed. Paper sludge (PS) ash is waste generated by the incineration of PS discharged from paper mills. It has been found that PS ash can absorb and retain excess water; and therefore, PS ash can simultaneously improve the stability of muds when it is mixed with them. However, the current mixture design approach for PSAS-treated soils is only applicable to muds with water contents exceeding the liquid limits and cannot be applied to construction-generated soils in which the coarse fraction is dominant. Therefore, this study evaluated the effects of a PSAS on the compaction and mechanical characteristics of coarse-grained soils to use them as materials for irrigation earth dams. A series of compaction tests were conducted on two types of soil samples treated with a PSAS to investigate its effects on the compaction characteristics. The compaction characteristics obtained from the tests were assessed considering the water absorption and retention performance of the PSAS. It was found that the modified optimum water content w*opt of the treated samples, which was evaluated using the amount of water unabsorbed and unretained by the PSAS, was almost equal to the wopt of the untreated samples. Consequently, a new mixture design approach was proposed based on the compaction characteristics. The calculated results successfully demonstrated that, if the compaction curve of an untreated sample and the water absorption and retention ratio, Wab, of the PSAS corresponding to a certain curing period are obtained, the range in the PSAS addition amount, APS1m3, required to attain the targeted compaction degree, (Dc)target, for the curing period can be estimated without conducting compaction tests on the treated samples. Finally, the strength characteristics of the treated samples prescribed by the proposed mixture design method were investigated by conducting CBR tests and CU¯TC tests. Based on the test results, discussions were made on the contribution of the proposed mixture design to the strength development of the treated samples and on the development mechanism.  相似文献   

17.
PS Rose  RL Swanson  JK Cochran 《Water research》2012,46(17):5663-5671
This work presents 131I (t½ = 8.04 d) concentrations in sewage effluent from the Stony Brook Water Pollution Control Plant (WPCP), a small plant serving a regional thyroid cancer treatment facility in Stony Brook, NY, USA. The concentrations detected in sewage effluent ranged from 1.8 ± 0.3 to 227 ± 2 Bq L−1. The primary source of 131I is excreta from thyroid cancer inpatients treated at the Stony Brook University Medical Center. Based on several time series measurements following known inpatient treatments, the mean sewage half-life (Ts) of iodine is 3 d in this plant. The Ts, analogous to a radioactive half-life, describes the time it takes for half of a wastewater component to be removed from a WPCP. Flow recycling, or activated sludge, used to maintain bacterial populations necessary for sewage treatment causes iodine to remain in this plant far longer than its hydraulic retention time. The experimental results suggest that most 131I entering the Stony Brook WPCP leaves in sewage effluent, not in sewage sludge. Patient treatments can result in continuous discharges of 131I to surface waters where it can be used as a tracer of sewage-derived material and to understand the behavior of 131I in aquatic environments.  相似文献   

18.
Secondary materials could help meeting the increasing demand of landfill cover liner materials. In this study, the effect of compaction energy, water content, ash ratio, freezing, drying and biological activity on the hydraulic conductivity of two fly ash-sewage sludge mixes was investigated using a 27-1 fractional factorial design. The aim was to identify the factors that influence hydraulic conductivity, to quantify their effects and to assess how a sufficiently low hydraulic conductivity can be achieved. The factors compaction energy and drying, as well as the factor interactions material × ash ratio and ash ratio × compaction energy affected hydraulic conductivity significantly (α = 0.05). Freezing on five freeze-thaw cycles did not affect hydraulic conductivity. Water content affected hydraulic conductivity only initially. The hydraulic conductivity data were modelled using multiple linear regression. The derived models were reliable as indicated by Radjusted2 values between 0.75 and 0.86. Independent on the ash ratio and the material, hydraulic conductivity was predicted to be between 1.7 × 10−11 m s−1 and 8.9 × 10−10 m s−1 if the compaction energy was 2.4 J cm−3, the ash ratio between 20% and 75% and drying did not occur. Thus, the investigated materials met the limit value for non-hazardous waste landfills of 10−9 m s−1.  相似文献   

19.
One of the conventional ways to improve the mechanical behavior of soils is to mix them with cementing agents such as cement, lime and fly ash. Recently, introduction to alternative materials or sub-products that can be adopted to improve the soil strength is of paramount importance. Therefore, the present study aims to investigate the effects of porosity (η), dry unit weight (γd) of molding, cement content (C) and porosity/volumetric cement content ratio (η/Civ) or void/cement ratio on the unconfined compressive strength (qu or UCS) of silty soil–roof tile waste (RT) mixtures. Soil samples are molded into four different dry unit weights (i.e. 13 kN/m3, 13.67 kN/m3, 14.33 kN/m3 and 15 kN/m3) using 3%, 6% and 9% cement and 5%, 15% and 30% RT. The results show that with the addition of cement, the strength of the RT–soil mixtures increases in a linear manner. On the other hand, the addition of RT decreases qu of the samples at a constant percentage of cement, and the decrease in porosity can increase qu. A dosage equation is derived from the experimental data using the porosity/volumetric cement content ratio (η/Civ) where the control variables are the moisture content, crushed tile content, cement content and porosity.  相似文献   

20.
Determination of sorption of seventy-five pharmaceuticals in sewage sludge   总被引:1,自引:0,他引:1  
Sorption of 75 active pharmaceutical ingredients (APIs) to three different types of sludge (primary sludge, secondary sludge with short and long sludge age respectively) were investigated. To obtain the sorption isotherms batch studies with the APIs mixture were performed in four nominal concentrations to water containing 1 g of sludge. The range of APIs concentrations was between ng L−1 to μg L−1 which are found in the wastewater effluents. Isotherms were obtained for approximately 45 of the APIs, providing distribution coefficients for linear (Kd), Freundlich (Kf) and Langmuir (KL) isotherms. Kd, Kf and KL ranging between 7.1 × 104 and 3.8 × 107, 1.1 × 10−2 and 6.1 × 104 and 9.2 × 10−3 and 1.1 L kg−1, respectively. The obtained coefficients were applied to estimate the fraction of APIs in the water phase (see Abstract Graphic). For 37 of the 75 APIs, the predicted presence in the liquid phase was estimated to >80%. 24 APIs were estimated to be present in the liquid phase between 20 and 80%, and 14 APIs were found to have <20% presence in the liquid phase, i.e. high affinity towards sludge. Furthermore, the effect of pH at values 6, 7 and 8 was evaluated using one way ANOVA-test. A significant difference in Kds due to pH changes were found for 6 of the APIs (variation 10-20%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号