首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A flow-injection biamperometric method for the determination of iron(III) has been described. The detector consists of two chambers separated by a salt bridge, and one platinum wire working electrode is embedded in each chamber, respectively. When iron(III) solution and hydrogen peroxide solution simultaneously flow through two chambers, the reduction of iron(III) at one platinum electrode is associated with the oxidation of hydrogen peroxide at the other platinum electrode, forming such a system as similar to a reversible couple one. The biamperometric system can perform the determination of iron(III) without any external potential difference. The linear relationship is obtained from 1.0 × 10−6 to 1.0 × 10−4 mol l−1 with a detection limit of 6.0 × 10−7 mol l−1. The proposed method exhibits the satisfactory reproducibility with a relative standard derivation (R.S.D.) of 1.4% for 17 successive determinations of 2.0 × 10−5 mol l−1 iron(III) and is applied to the determination of iron(III) in soil.  相似文献   

2.
A novel vanadium oxide polypropylene carbonate modified glassy carbon electrode was developed and used for the measurement of ascorbic acid (AA). The electrode was prepared by casting a mixture of vanadium tri(isopropoxide) oxide (VO(OC3H7)3) and poly(propylene carbonate) (PPC) onto the surface of a glassy carbon electrode. The electrochemical behavior of the VO(OC3H7)3–PPC film modified glassy carbon electrode was investigated by cyclic voltammetry and amperometry. This modified electrode exhibited electrocatalytic response to the oxidation of ascorbic acid. Compared with a bare glassy carbon electrode, the modified electrode exhibits a 220 mV shift of the oxidation potential of ascorbic acid in the cathodic direction and a marked enhancement of the current response. The response current revealed a good linear relationship with the concentration of ascorbic acid in the range of 4 × 10−8 and 1 × 10−4 mol L−1 and the detection limit of 1.5 × 10−8 mol L−1 (S/N = 3) in the pH 8.06 Britton–Robinson solution. Quantitative recovery of the ascorbic acid in synthetic samples has been obtained and the interferences from different species have been studied. The method has been successfully applied to the determination of ascorbic acid in fruits. The concentrations of ascorbic acid measured by this method are in good agreement with the literature value. It is much promising for the modified films to be used as an electrochemical sensor for the detection of ascorbic acid.  相似文献   

3.
A cobaloxime ([chlorobis(dimethylglyoximeato)(triphenylphosphine)] cobalt (III), [Co(dmgH)2pph3Cl]) incorporated in a plasticized poly(vinyl chloride) membrane was used to develop a perchlorate-selective electrode. The influence of membrane composition on the electrode response was studied. The electrode exhibits a Nernstian response over the perchlorate concentration range 1.0 × 10−6 to 1 × 10−1 mol l−1 with a slope of −56.8 ± 0.7 mV per decade of concentration, a detection limit of 8.3 × 10−7, a wide working pH range (3–10) and a fast response time (<15 s). The electrode shows excellent selectivity towards perchlorate with respect to many common anions. The electrode was used to determine perchlorate in water and human urine.  相似文献   

4.
Tri-o-thymotide (I) has been used as an electroactive material in PVC (poly(vinyl chloride)) matrix for fabrication of chromium(III)-selective sensor. The membrane containing tri-o-thymotide, sodium tetraphenyl borate (NaTPB), dibutyl phthalate (DBP) and PVC in the optimum ratio 5:1:75:100 (w/w) exhibits a working concentration range of 4.0 × 10−6 to 1.0 × 10−1 M with a Nernstian slope of 20.0 ± 0.1 mV/decade of activity in the pH range of 2.8–5.1. The detection limit of this sensor is 2.0 × 10−7 M. The electrode exhibits a fast response time of 15 s, shows good selectivity towards Cr3+ over a number of mono-, bi- and trivalent cations and can also be used in partially non-aqueous medium (up to 15%, v/v) also. The assembly has been successfully used as an indicator electrode in the potentiometric titration of chromium(III) against EDTA and also to determine Cr(III) quantitatively in electroplating industry waste samples.  相似文献   

5.
A hydrogen ion-selective electrode (ISE) is prepared by using 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetracyanometoxy-calix[4]arene and an investigation about whether it could be used as a thiocyanate ion-selective electrode is made by using its characteristic of becoming thiocyanate sensitive in acidic regions. The electrode of the optimum characteristic has a composition of 1% ionophore, 66% 2-NPOE and 33% poly(vinyl chloride) (PVC). This electrode exhibits a linear response over the range 1.0 × 10−1 to 3.0 × 10−5 M of thiocyanate with a slope of 52.0 ± 0.2 mV/pSCN. The effects of the pH and the membrane composition are also investigated. The lifetime of the electrode is at least 4 months and its response time is found to be 10–15 s. The selectivity coefficients of some anions are calculated by using mixed solution interference method. Application of the electrode to the potentiometric titration of thiocyanate ion with silver nitrate is reported. There is a good agreement between the results obtained by the proposed electrode and the Mohr method at 95% confidence level.  相似文献   

6.
Immobilized salicylic acid onto XAD-2 (styrene–divinylbenzene cross-linked copolymer) has been attempted in this study as a reagent phase for the development of an optical fibre copper (II) sensor. The measurements were carried out at a given wavelength of 690.27 nm since it yielded the largest divergence different in reflectance spectra before and after reaction with the analyte element. The optimum response was obtained at pH 5.0. The linear dynamic range of Cu(II) was found within the concentration range of 1.0–2.0 mmol L−1 with its LOD of 0.5 mmol L−1. The sensor response from different probes (n = 9) gave an R.S.D. of 8.4% at 0.55 mmol L−1 Cu(II). The effect of interfered ions at 1:1 molar ratio of Cu(II):foreign ion was also studied in this work.  相似文献   

7.
Using the density functional theory methods, we effectively tune the second-order nonlinear optical (NLO) properties in some chalcone derivatives. Various unique push–pull configurations are used to efficiently enhance the intramolecular charge transfer process over the designed derivatives, which result in significantly larger amplitudes of the first hyperpolarizability as compared to their parent molecule. The ground state molecular geometries have been optimized using B3LYP/6-311G** level of theory. A variety of methods including B3LYP, CAM-B3LYP, PBE0, M06, BHandHLYP and MP2 are tested with 6-311G** basis set to calculate the first hyperpolarizability of parent system 1. The results of M06 are found closer to highly correlated MP2 method, which has been selected to calculate static and frequency dependent first hyperpolarizability amplitudes of all selected systems. At M06/6-311G** level of theory, the permanent electronic dipole moment (μtot), polarizability (α0) and static first hyperpolarizability (βtot) amplitudes for parent system 1 are found to be 5.139 Debye, 274 a. u. and 24.22 × 10−30 esu, respectively. These amplitudes have been significantly enhanced in designed derivatives 2 and 3. More importantly, the (βtot) amplitudes of systems 2 and 3 mount to 75.78 × 10−30 and 128.51 × 10−30 esu, respectively, which are about 3 times and 5 times larger than that of their parent system 1. Additionally, we have extended the structure-NLO property relationship to several newly synthesized chalcone derivatives. Interestingly, the amplitudes of dynamic frequency dependent hyperpolarizability μβω (SHG) are also significantly larger having values of 366.72 × 10−48, 856.32 × 10−48 and 1913.46 × 10−48 esu for systems 13, respectively, at 1400 nm of incident laser wavelength. The dispersion behavior over a wide range of change in wavelength has also been studied adopting a range of wavelength from 1907 to 544 nm. Thus, the present work realizes the potential of designed derivatives as efficient NLO-phores for modern NLO applications.  相似文献   

8.
An alternating dielectric multi-layer device was fabricated and tested in the laboratory to show that dielectric mirrors of alternating high/low refractive index materials, based on the design of distributed Bragg reflector (DBR) for vertical cavity surface emission lasers (VCSELs), can be used in designing SPR biochemical sensors. The thickness, number of layers, and other design parameters of the device used were optimized using optical admittance loci analysis. The proof-of-concept device was fabricated with a symmetrical structure using Au/(SiO2/TiO2)4/Au.Using a 632 nm-wavelength light source on a BK7 coupling prism, our laboratory tests showed that, under water, there was an 11.5° shift in resonant peak position towards the critical angle (from 74° in a conventional single-layer Au film), and a 3.25 times decrease in FWHM (the half-peak width). Our design also resulted in a wider dynamic range of up to a 1.50 refractive index unit (RIU), compared to 1.38 RIU in a conventional single-layer Au film. Using glucose solutions in ddH2O, the calculated resolution was 1.28 × 10−5. The calculated intensity sensitivity was 10 000 a.u./RIU, about twice the improvement over the conventional single-layer Au film.  相似文献   

9.
Detection of hazardous chemical species by changing the electrical conductivity of a semiconductor matter is a proposed and applied way for decreasing their subsequent unpleasant effects. Recently, many examples of using inorganic or organic materials, polymeric, and also nano-sized species as sensors were reported in which, in some cases, those matters were strongly affective and suitable.In this project, we have made an assessment on whether the graphene segment or C20 fullerene, able to sense the existence of cyanogen chloride NCCl? In order to gain trustable results, the possible reaction pathways along with the adsorption kinetics were investigated. Moreover, the electronic density of states DOS showed that C20 fullerene senses the existence of cyanogen chloride agent with a clearer signal (ΔEg = 0.0110 eV) compared to the graphene segment (ΔEg = 0.0001 eV). Also the adsorption energy calculations showed that cyanogen chloride could be adsorbed by the fullerene in a multi-step process (Eads1 = −0.852 kcal mol−1; Eads2 = −0.446 kcal mol−1; Eads3 = −2.330 kcal mol−1).  相似文献   

10.
This paper describes a novel single-layer bi-material cantilever microstructure without silicon (Si) substrate for focal plane array (FPA) application in uncooled optomechanical infrared imaging system (UOIIS). The UOIIS, responding to the radiate infrared (IR) source with spectral range from 8 to 14 μm, may receive an IR image through visible optical readout method. The temperature distribution of the IR source could be obtained by measuring the thermal–mechanical rotation angle distribution of every pixel in the cantilever array, which is consisted of two materials with mismatching thermal expansion coefficients. In order to obtain a high detection to the IR object, gold (Au) film is coated alternately on silicon nitride (SiNx) film in the flection beams of the cantilevers. And a thermal–mechanical model for such cantilever microstructure is proposed. The thermal and thermal–mechanical coupling field characteristics of the cantilever array structure are optimized through numerical analysis method and simulated by using the finite element simulation method. The thermal–mechanical rotation angle simulated and thermal–mechanical sensitivity tested in the experiment are 2.459 × 10−3 and 3.322 × 10−4 rad/K, respectively, generally in good agreement with what the thermal–mechanical model and numerical analysis forecast, which offers an effective reference for FPA structure parameters design in UOIIS.  相似文献   

11.
Our study aims to estimate confounded effects of nutrients and grazing zooplankton (Crustacea) on phytoplankton groups—specifically on nitrogen-fixing Cyanobacteria—in the shallow, mesotrophic Lake Pyhäjärvi in the northern hemisphere (Finland, northern Europe, lat. 60°54′–61°06′, long. 22°09′–22°22′). Phytoplankton is modelled with a non-linear dynamic model which describes the succession of three dominant algae groups (Diatomophyceae, Chrysophyceae, nitrogen-fixing Cyanobacteria) and minor groups summed together as a function of total phosphorus, total nitrogen, temperature, global irradiance and crustacean zooplankton grazing. The model is fitted using 8 years of in situ observations and adaptive Markov chain Monte Carlo (MCMC) methods for estimation of model parameters. The approach offers a way to deal with noisy data and a large number of weakly identifiable parameters in a model. From our posterior simulations we calculate the lower limit for zooplankton carbon mass concentration (45 μgC L−1) and the upper limit for total phosphorus concentration (16 μg L−1) that satisfy with 0.95 probability our predefined water quality criteria (Cyanobacteria concentration during late summer period does not exceed the value 0.86 mg L−1). Within the observational range total phosphorus has marginal effect on Cyanobacteria compared to the zooplankton grazing effect, which is temperature-dependent. Extensive fishing efforts are needed to attain the criteria.  相似文献   

12.
This paper describes a technique for the measurement of the electrolyte temperature in an operating polymer electrolyte fuel cell (PEFC). A patterned thin film gold thermistor embedded in a 16 μm thick parylene film was laminated in the Nafion® electrolyte layer for in situ temperature measurements. Experimental results show that the sensor has a linear response of (3.03 ± 0.09) × 10−3 °C−1 in the 20–100 °C temperature range and is robust enough to withstand the electrolyte expansion forces that occur during water uptake. An electrolyte temperature increase of 1.5 °C was observed in real-time when operating the fuel cell at 0.2 V and a current density of 0.19 A/cm2. The temperature sensitivity of the present sensor is in an order of magnitude better than the conventional micro-thermocouples that have been reported. Additionally, use of micro-fabrication techniques allows for an accurate placement of the temperature sensor within the fuel cell. Simulation results show that the sensor has no significant effect on the local temperature distribution.  相似文献   

13.
The preparation and performance of a xanthine oxidase (XOD) biosensor, based on a carbon paste electrode (CPE) modified with electrodeposited gold nanoparticles (nAu), for the amperometric determination of hypoxanthine (Hx) is reported. Different XOD biosensor configurations were evaluated and compared with electrodes constructed by immobilizing XOD onto unmodified CPE and with biosensors prepared using glassy carbon electrodes and gold disk electrodes modified with electrodeposited gold. The XOD–nAu–CPE in which the enzyme was immobilized by cross-linking with glutaraldehyde (GA) and BSA exhibited the highest amperometric signal for Hx. Although Hx detection is usually carried out at potential values of around +600 mV versus Ag/AgCl, the GA–BSA–XOD–nAu–CPE allowed this detection to be carried out at 0.00 V, thus minimizing potential interferences from electrochemically oxidizable substances such as ascorbic acid. Experimental variables concerning the biosensor preparation were optimized. Calibration plots for Hx were constructed with the biosensor operating at +600 mV and at 0.00 V. The detection limit for Hx, 2.2 × 10−7 mol l−1, obtained using the latter potential value is similar to the best detection limits reported in the literature with other biosensor designs working at much more extreme potentials. The usefulness of the biosensor for the analysis of real samples was demonstrated by determining Hx in sardines and chicken meat.  相似文献   

14.
A theoretical study on the mechanism and kinetics of the gas phase reactions of CF3CHFCF2OCH2CF3 (HFE-449mec-f) with the OH radicals and Cl atom have been performed using meta-hybrid modern density functional M06-2X using 6-31+G(d,p) basis set. Two conformers have been identified for CF3CHFCF2OCH2CF3 and the most stable one is considered for detailed study. Reaction profiles for OH-initiated hydrogen abstraction are modeled including the formation of pre-reactive and post-reactive complexes at entrance and exit channels. Our calculations reveal that hydrogen abstraction from the CH2 group is thermodynamically and kinetically more facile than that from the CHF group. Using group-balanced isodesmic reactions, the standard enthalpies of formation for HFE-449mecf and radicals generated by hydrogen abstraction, are also reported. The calculated bond dissociation energies for CH bonds are in good agreement with experimental results. The rate constants of the two reactions are determined for the first time in a wide temperature range of 250–450 K. The calculated rate constant values are found to be 9.10 × 10−15 and 4.77 × 10−17 cm3 molecule−1 s−1 for reactions with OH radicals and Cl atom, respectively. At 298 K, the total calculated rate coefficient for reactions with OH radical is in good agreement with the experimental results. The atmospheric life time of HFE-449mec-f is estimated to be 0.287 years.  相似文献   

15.
Candida Antarctica lipase B (CALB), a specific enzyme to catalyze the hydrolysis of esters, can be a good candidate for acetylcholine (ACh) hydrolysis instead of acetylcholinesterase. The catalytic mechanism of the CALB acylation, as the first stage in the hydrolysis reaction, with ACh and methylcaprylate (MEC) has been examined by using density functional theory technique. The significant emphasis of this article is on the free energy barriers for the acylation step of hydrolysis reactions. Computed free energy barriers of the first step are 9.2 and 15.9 kcal mol−1, but for the second step are 7.9 and 11.6 kcal mol−1 for MEC and ACh respectively. Activation free energies are in the comparable and acceptable range and imply both of two reactions are theoretically possible. The stability role of the adjacent amino acids was examined by using two applied tools. It is exposed that the oxyanion hole residues decrease energy barriers by stabilizing the transition state structures.  相似文献   

16.
Temperature dependence of water vapor sorption and electro-active polymer actuating behavior of free-standing films made of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) was investigated by means of sorption isotherm and electromechanical analyses. The non-porous PEDOT/PSS film, having a specific surface area of 0.13 m2 g?1, sorbed water vapor of 1080 cm3(STP) g?1, corresponding to 87 wt%, at relative water vapor pressure of 0.95. A temperature rise from 25 °C to 40 °C lowered sorption degree, indicative of an exothermic process, where isosteric heat of sorption decreased with increasing water vapor sorption and the value reached 43.9 kJ mol?1, being consistent with the heat of water condensation (44 kJ mol?1). Upon application of 10 V, the film underwent contraction of 2.46% at 5 °C caused by desorption of water vapor due to Joule heating, which slightly decreased to 2.10% at 45 °C. The speed of contraction was one order of magnitude faster than that of expansion and less dependent on the temperature since water vapor sorbed in the film were forced to desorb by Joule heating. In contrast, the higher the temperature the faster the film expansion because diffusion coefficient increased as the temperature became higher.  相似文献   

17.
A distributed water balance model is used to simulate the soil moisture regime of the Motueka catchment. The model is a major simplification of the Distributed Hydrology–Vegetation–Soil Model (DHVSM) with modifications suitable for the study area. The model was applied at 25-m resolution with a 1-day time-step for 10 years. The simulated hydrograph showed good correspondence with the observed hydrograph and there was good agreement of simulated and measured mean annual discharges (57.3 m3 s−1 as compared with 58.7 m3 s−1). Five different land cover scenarios were used to predict the effects of vegetation change on the hydrological regime: (1) current land cover; (2) prehistoric land cover; (3) maximum pine planting; (4) pine trees on easy slopes; and (5) pine trees on steep slopes. The pine scenarios all reduced the mean annual flow by about 2 m3 s−1, while the prehistoric scenario reduced the mean annual flow by about 6 m3 s−1. The pine scenarios (3, 4, and 5) reduced the 7-day 5-year low flow from 7.4 m3 s−1 to between 6.5 m3 s−1 and 6.8 m3 s−1, respectively; and the prehistoric scenario reduced the 7-day 5-year low flow to 5.3 m3 s−1.  相似文献   

18.
This study reports the packaging effects of wafer-level chip scale packaging (WL-CSP) with a central opening on piezoresistive pressure sensors. A regular pressure sensor with calculated sensitivity of 3.1 × 10?2 mVV?1 kPa?1 and a sensitive pressure sensor with calculated sensitivity of 32.0 × 10?2 mVV?1 kPa?1 are investigated. A finite element (FE) model validated by experimental measurements is used to explore the sensing characteristics of the pressure sensors. The results show that the output variation of the packaged pressure sensor is dominated by the CTE mismatch not the piezoresistive coefficient change as temperature varies. WL-CSP with small polyimide (PI) thickness and large PI opening produces small packaging induced stress, making it ideal for precision sensing for both regular and sensitive pressure sensors.  相似文献   

19.
The implicit Colebrook–White equation has been widely used to estimate the friction factor for turbulent fluid-flow in rough-pipes. In this paper, the state-of-the-art review for the most currently available explicit alternatives to the Colebrook–White equation, is presented. An extensive comparison test was established on the 20 × 500 grid, for a wide range of relative roughness (ε/D) and Reynolds number (R) values (1 × 10?6 ? ε/D ? 5 × 10?2; 4 × 103 ? R ? 108), covering a large portion of turbulent flow zone in Moody’s diagram. Based on the comprehensive error analysis, the magnitude points in which the maximum absolute and the maximum relative error are occurred at the pair of ε/D and R values, are observed. A limiting case of the most of these approximations provided friction factor estimates that are characterized by a mean absolute error of 5 × 10?4, a maximum absolute error of 4 × 10?3 whereas, a mean relative error of 1.3% and a maximum relative error of 5.8%, over the entire range of ε/D and R values, respectively. For practical purposes, the complete results for the maximum and the mean relative errors versus the 20 sets of ε/D value, are also indicated in two comparative figures. The examination results for error properties of these approximations gives one an opportunity to practically evaluate the most accurate formula among of all the previous explicit models; and showing in this way its great flexibility for estimating turbulent flow friction factor. Comparative analysis for the mean relative error profile revealed, the classification for the best-fitted six equations examined was in a good agreement with those of the best model selection criterion claimed in the recent literature, for all performed simulations.  相似文献   

20.
Incorporating multicomponent, multiphase, complex chemical equilibrium calculations into process and multiphysics models can provide significant insights into industrial processes that current modelling or measurements cannot. Equilibrium calculations are however, in general, omitted or incorporated in a simplified manner due to their computational expense. Several methods have been developed to accelerate these calculations.A new accelerator algorithm was developed (Roos and Zietsman, 2021) based on phase diagram geometry, the Gibbs phase rule, and the lever rule to include equilibrium calculations into models more efficiently. This framework of established thermochemical theory provides a sound basis for discretisation and interpolation, and allows the accelerator algorithm to work in systems with any number of components. The work presented here aimed to test accelerator performance and demonstrate that it has the capability of achieving noteworthy levels of acceleration while maintaining acceptable accuracy.The accelerator was tested on ten 2-component systems, four 3-component systems, a simplified 4-component ilmenite smelting system, and a simplified 5-component iron- and steelmaking system. As the number of system components increased, so did the computational expense of direct equilibrium calculations. This translated to larger acceleration factors for higher-order systems — from 20 in 2-component systems to 1000 in the 5-component system. In a small number of cases it was observed that the acceleration factor was smaller than one during interpolation. This was attributed to slow searching times for suitable interpolation cells from the database.Phase composition interpolation errors are less than 1 × 10-2 mol mol−1. This translates to an interpolated phase composition being accurate to within 99 % of the calculated composition and results in phase fraction errors of 1 × 10-2 and less. In a very small number of cases the interpolation errors made on physical and thermochemical properties are as high 10 %. This is because system properties are calculated as a phase fraction weighted sum of phase properties and errors made on system properties can therefore become large due to interpolation errors being made twice. However, the majority of errors made on physical and thermochemical properties are in the order of 1 % and less. The level of accuracy achieved by the accelerator algorithm was acceptable for the chosen discretisation tolerances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号