首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Closed cell ferrous foams were fabricated using a chemically bonded oxide ceramic foam precursor. The major constituent of the ceramic foam precursor was iron oxide (Fe2O3), which was mixed with various foaming/setting additives. The density of the foam was modified by varying the ambient pressure under which foaming was carried out. Further, a magnesium–ammonium phosphate-based cement system was utilized to promote more rapid setting times and hence minimize foam collapse. The oxide foam was then reduced by heating at 1240°C in a non-flammable hydrogen/inert gas mixture to obtain metallic foams. The relative density of samples foamed under a reduced pressure (∼380 Torr) was 0.13±0.006, which is the lowest value reported to date for a closed cell ferrous foam. A relative density of 0.21±0.01 was achieved for samples foamed under atmospheric pressure. With regard to the foam morphology, the average cell diameter was 1.41±0.6 mm for the low-density (LD) foams, and 0.96±0.2 mm for the high-density (HD) foams. The iron foams were tested in compression and yielded an average compressive strength of 11±1 and 19±4 MPa for the LD and HD foams, respectively. A comparison based on a bending strength performance index showed that the properties of the ceramic–precursor-derived foams compared favorably with those of steel foams fabricated by other techniques.  相似文献   

2.
The aim of this study was to investigate polyurethane foams (PUF) properties obtained from crude glycerol (CG) and polyethylene glycol (PEG) based liquefaction of sawdust. The four types of foam were prepared by producing polyols from different weight loadings of PEG to CG as the liquefaction solvent. The produced polyurethane foams showed densities from 0.042 to 0.08 g/cm3 and compressive strengths from 200 to 311 kPa. The foams obtained from CG/PEG based liquefaction, had more uniform and regular cell structure than foams derived from liquefaction by CG. Also with the increasing percentage of PEG to CG in liquefaction, closed cell content of the synthesized foams increased and the size of cells decreased. The thermal conductivity of the produced foams was between 0.031 and 0.040 W/m K. Foams produced from liquefaction by binary solvent had lower thermal conductivity. However all foams showed approximately similar thermal degradation curves; maximum thermal decomposition temperature was seen for the foam produced from higher weight ratio of PEG to CG in liquefaction. PU foams produced from PEG/CG based liquefaction process had improved properties over from foams derived from sawdust liquefaction by CG.  相似文献   

3.
The bio‐based rigid polyurethane (PU) foams were successfully prepared based on liquefied products from peanut shell with water as the blowing agent. The influence of reaction parameters on properties of rigid PU foams was investigated. Rigid PU foams showed excellent compressive strength and low shrinkage ratio, whereas their open‐cell ratio and water absorption were higher. Therefore, rigid PU foams were synthesized with petroleum ether, diethyl ether, and acetone as auxiliary blowing agents and their inner temperature, shrinkage performance, density, compressive strength, water absorption, and open‐cell ratio were determined. The results indicated that above rigid PU foams showed lower compressive strength than the original foam but their water absorption and close‐cell ratio were improved. Compared with the original foam, the highest inner temperature of rigid PU foams with petroleum ether, diethyl ether, and acetone as auxiliary blowing agents was reduced by 11, 19, and 23 °C, respectively. Typically, foams with petroleum ether as auxiliary blowing agent displayed better water absorption and swelling ratio in water and exhibited obvious improvement in close‐cell ratio. These foams were preferable for application in thermal insulation materials because of low thermal conductivity and better corrosion resistance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45582.  相似文献   

4.
This study investigated the physical properties of water‐blown rigid polyurethane (PU) foams made from VORANOL®490 (petroleum‐based polyether polyol) mixed with 0–50% high viscosity (13,000–31,000 cP at 22°C) soy‐polyols. The density of these foams decreased as the soy‐polyol percentage increased. The compressive strength decreased, decreased and then increased, or remained unchanged and then increased with increasing soy‐polyol percentage depending on the viscosity of the soy‐polyol. Foams made from high viscosity (21,000–31,000 cP) soy‐polyols exhibited similar or superior density‐compressive strength properties to the control foam made from 100% VORNAOL® 490. The thermal conductivity of foams containing soy‐polyols was slightly higher than the control foam. The maximal foaming temperatures of foams slightly decreased with increasing soy‐polyol percentage. Micrographs of foams showed that they had many cells in the shape of sphere or polyhedra. With increasing soy‐polyol percentage, the cell size decreased, and the cell number increased. Based on the analysis of isocyanate content and compressive strength of foams, it was concluded that rigid PU foams could be made by replacing 50% petroleum‐based polyol with a high viscosity soy‐polyol resulting in a 30% reduction in the isocyanate content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
聚氨酯复合泡沫塑料的动态压缩力学性能   总被引:13,自引:0,他引:13  
针对几种不同密度、不同玻璃微珠填充比的聚氨酯复合泡沫塑料进行了动态压缩实验,研究了这类材料的宏观动态力学性能。结果表明,动态应力-应变曲线与准静态压缩加载下的应力-应变曲线具有相同的特征,也分为弹性区、平台区和致密区;在较大的应变率范围内,复合泡沫塑料的应变率效应是明显的,高密度复合泡沫塑料的屈服强度随应变率的增加而增加,而中、低密度材料的屈服强度则先随应变率的增加而提高,然后在某一高应变率下强度反而下降,材料表现出软化现象。  相似文献   

6.
Abstract

The uniaxial compressive modulus of foams has been studied using models for cellular solids. These models predict that the modulus is a function of the relative density of the foam. However, experimental data show a large degree of scatter, which is investigated. Two factors are considered: density variation within the foam, and the shape and geometry of the cell edge cross-section. The results show that density variation within the foam does not contribute significantly to the difference. However, the geometry of the cell, and especially the cell edge cross-section, plays an important role and is the likely cause of the large variations in modulus at low densities. The fraction of solid material contained in the cell edges, as opposed to the walls, is a key component of cell geometry, which becomes increasingly important as the relative density decreases.  相似文献   

7.
Water is eco-friendly and safe; thus, it used as a blowing agent in the fabrication of water-blown polyurethane (PU) foam. However, water-blown PU foam may experience dimensional instability due to shrinkage of the cells inside the foam. In order to reduce cell shrinkage due to the loss of CO2 gas, vacuum formation is prevented in the closed-cell foam and the maximum reaction temperature must be raised to increase the degree of curing of the PU foam. In this study, two flame retardants, aluminum trihydrate (ATH) and magnesium dihydrate (MDH), were selected as additives to partially open the cells and increase the maximum reaction temperature. ATH and MDH were both effective for increasing the maximum foam reaction temperature and decreasing dimensional change. Notably, PU foams with 7.5 wt% ATH were the most dimensionally stable at both room temperature and high temperature. Moreover, the compressive strength and flexural strength of such foams were also improved compared to those of the foams without any additive.  相似文献   

8.
A novel method for preparing rigid polyurethane (PU) foam/organoclay nanocomposites was developed through the direct incorporation of an organoclay into PU foam matrices without the addition of any physical or chemical blowing agent. The resultant foams with an appropriate content of the organoclay had a finer cell structure than the pristine PU foams because the organoclay not only acted as a nucleating agent as expected but also acted as a blowing agent of the PU foams; this could be attributed to the bound water between the interlayers of the organoclay. In addition, the incorporation of the organoclay up to 4 phr resulted in improvements in the tensile and compressive strengths, with the maximum values appearing at 2 phr (110 and 152%, respectively). The significant improvement in the mechanical properties could be attributed to the finer cell structure and the increased internal strength of the materials due to the higher degree of hydrogen bonding. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
Elastomer foams based on EVA, PU, and EVA/PU blends formulated for shoe‐sole applications were prepared by a supercritical N2 batch foaming process and characterized for physicomechanical, friction and abrasion properties. The blending of EVA with PU was aimed for improving the friction and wear characteristics of the EVA based foams. All of the foams prepared showed spherical cells with closed‐cell morphology and the cell sizes varied with varying the EVA/PU blend ratio and CaCO3 content of the foams. The properties such as hardness and resilience, friction coefficients and abrasion resistance improved for the EVA/PU blend foams compared to the EVA foam, but their compression set, tensile strength, and tear strength were inferior to the EVA foam. The incorporation of CaCO3 filler increased density, hardness, tensile strength, and tear strength of the EVA/PU blend foams but decreased resilience, compression set, friction coefficients, and abrasion resistance. The improvement in friction coefficients and wear resistance obtained in the EVA/PU blend foams was significant for shoe‐sole applications. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

10.
用含有小分子醇的交联剂和催化剂使废旧聚氨酯(PU)硬泡进行降解能够获得多元醇,将降解料与聚醚多元醇、催化剂和发泡剂共混以制备白料,然后与黑料异氰酸酯混合均匀,得到再生PU硬泡。通过对降解产物的黏度、羟值以及获得的再生PU硬泡材料的密度、强度、吸水率、热稳定性、扫描电子显微镜、红外光谱和热失重等进行测试分析,得出了催化剂添加量对废旧PU材料回收再利用的影响因素。结果表明,催化剂(KOH)用量为0.9 g时废旧PU的降解效果最好,获得的再生PU硬泡的密度为37.6 kg/cm3,压缩强度为164.2 kPa,热导率为0.015 24 W/(m·K),吸水率为0.429 5 %。  相似文献   

11.
Three different surface modifiers, octadecyl trimethyl ammonium (ODTMA), octadecyl primary ammonium (ODPA), and decanediamine (DDA) were used to modify Na+? montmorillonite (MMT), and the resultant organoclays were coded as ODTMA‐MMT, ODPA‐MMT, DDA‐MMT, respectively. Rigid PU foams/organoclay composites were prepared by directly using organoclay as the blowing agent without the addition of water. Investigation shows that the morphology of the nanocomposites is greatly dependent on the surface modifiers of clay used in the composites. In detail, DDA‐MMT is partially exfoliated in the PU matrix with the smallest cell size, while two others are intercalated in the PU matrices with smaller cell sizes. The sequence of their cell sizes is pristine PU foams > rigid PU foams/ODTMA‐MMT > rigid PU foams/ODPA‐MMT > rigid PU foams/DDA‐MMT, and the average cell size of rigid PU foams/DDA‐MMT composites decreases evidently from 0.30 to 0.07 mm. Moreover, all rigid PU foams/organoclay composites show remarkable enhanced compressive and tensile strengths as well as dynamic properties than those of PU foams, and the enhancement degree coincides well with the relative extent of internal hydrogen bonding of materials and gallery spacing of organoclay. For example, in the case of rigid PU foams/DDA‐MMT composite, 214% increase in compressive strength and 148% increase in tensile strength compared with those of pure PU foams were observed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

12.
高密度聚氨酯硬泡塑料/玻纤粉复合材料的研究   总被引:2,自引:1,他引:1  
以聚醚多元醇、PAPI、催化剂、发泡剂和玻璃纤维等为原料,制备高密度聚氨酯硬泡及它与磨碎玻纤粉的复合材料。研究了不同密度硬泡的强度及磨碎玻纤粉粒径、预处理及其含量对复合材料强度的影响,不同复合材料的热稳定性。结果表明,随着密度的增加,硬泡的各种强度值总体上均呈逐渐增加趋势,其中500kg/m^3的聚氨酯的拉伸强度比200kg/m^3的提高了104.74%,冲击强度提高了194.84%;400目粒径的玻纤粉可使复合材料具有更高的拉伸强度、弯曲强度及压缩强度;玻纤的加入将降低材料的强度值,但偶联剂预处理可使它们有所改善;加入磨碎玻纤粉后,材料的热稳定性增加,且采用偶联剂KH550对玻纤粉进行预处理可进一步改善复合材料的耐热性能。  相似文献   

13.
In this study, glass bubble (GB) is added to polyurethane (PU) foams at different weight ratios—0, 0.25, 0.5, 0.75, and 1 wt% —to investigate the changes in the mechanical and thermal properties of the foam. By conducting several tests and measurements, the density, cell morphology, compressive strength, and thermal conductivity of the foam are studied. In particular, the effect of GB additives is examined by conducting compression tests at various temperatures (−163, −100, −40, and 20°C). Scanning electron microscopy and X-ray microscope reveal that the foams exhibit higher stability below 0.5 wt%, which improves the thermal performance. On the other hand, the compressive strength of the foams increases for all weight ratios of GB, and it increases sharply at 0.75 wt%. In addition, the chemical interactions and the dispersion of additives in the PU matrix are investigated through Fourier transform infrared and X-ray diffractions analysis. It is found that the synthesis of PU foams with GB nanoparticles is an efficient method for improving the mechanical properties and insulation performance of the foam for LNG insulation technology.  相似文献   

14.
Rigid polyurethane foams from a soybean oil-based Polyol   总被引:2,自引:0,他引:2  
Polyurethane (PU) rigid foams were synthesized by substituting a polypropylene-based polyol with soybean oil-based polyol (SBOP). All the soy-based foams maintained a regular cell structure and had even smaller average cell size than the control foams. The density of soy-based foams was within 5% of the controls, except that the density of foams from 100% SBOP was 17% higher. Soy-based foams also had comparable initial thermal conductivity (k value) and closed cell content, higher Tg and compressive strength. However, while foams from 50% SBOP showed similar increase in k value to the 0% SBOP foams, under accelerated aging conditions, the 100% SBOP foams aged faster. Gas permeation tests performed on PU thin films showed higher N2 permeation for PU thin films made from SBOP which is believed to be the cause of accelerated thermal aging.  相似文献   

15.
Polyol derived from soybean oil was made from crude soybean oil by epoxidization and hydroxylation. Soy-based polyurethane (PU) foams were prepared by the in-situ reaction of methylene diphenyl diisocyanate (MDI) polyurea prepolymer and soy-based polyol. A free-rise method was developed to prepare the sustainable PU foams for use in automotive and bedding cushions. In this study, three petroleum-based PU foams were compared with two soy-based PU foams in terms of their foam characterizations and properties. Soy-based PU foams were made with soy-based polyols with different hydroxyl values. Soy-based PU foams had higher T g (glass transition temperature) and worse cryogenic properties than petroleum-based PU foams. Bio-foams had lower thermal degradation temperatures in the urethane degradation due to natural molecular chains with lower thermal stability than petroleum skeletons. However, these foams had good thermal degradation at a high temperature stage because of MDI polyurea prepolymer, which had superior thermal stability than toluene diisocyanate adducts in petroleum-based PU foams. In addition, soy-based polyol, with high hydroxyl value, contributed PU foam with superior tensile and higher elongation, but lower compressive strength and modulus. Nonetheless, bio-foam made with high hydroxyl valued soy-based polyol had smaller and better distributed cell size than that using low hydroxyl soy-based polyol. Soy-based polyol with high hydroxyl value also contributed the bio-foam with thinner cell walls compared to that with low hydroxyl value, whereas, petroleum-based PU foams had no variations in cell thickness and cell distributions.  相似文献   

16.
《应用陶瓷进展》2013,112(5):209-215
Abstract

The goal of this work was to clarify the macrostructural changes that take place upon sintering of open cell cordierite based foams. A methodology, based on optical image analysis, was developed to assess the structure of open-cell foams, which allowed evaluating the macrostructure of both cordierite based foams obtained by the replication process and their polymeric templates. The parameters used to describe the structures were the size of the cell and the window, the window shape factor, the strut thickness and the volume fraction of the material. The experimental evidence gathered opened the way to understand the physical/chemical transformations involved in the polymer burnout and the ceramic sintering processes, as well as their influence on the ceramic final structure. The observed trends provide guidance for tailoring 'replicated' cordierite based foams, in view of the required application.  相似文献   

17.
Bamboo residues were liquefied by using a solvent mixture consisting of polyethylene glycol 400 and crude glycerol (4/1, w/w) with 98% sulfuric acid as catalyst at 160°C for 120 min. The liquefied bamboo had hydroxyl values from 178 to 200 mg KOH/g and viscosities from 507 to 2201 mPa S. The obtained bamboo‐based polyols were reacted with various amounts of polyaryl polymethylene isocyanate (PAPI), using distilled water as blowing agent, silicone as surfactant, and triethylenediamine and dibutyltine dilaurate as cocatalyst to produce semirigid polyurethane (PU) foams. The [NCO]/[OH] ratio was found to be an important factor to control the mechanical properties of PU foams. At a fixed [NCO]/[OH] ratio, both density and compressive strength of PU foams decreased with the increase of bamboo content. The microstructure of PU foams indicates that [NCO]/[OH] ratios are important for cell formation and chemical reactions. The uniformity and cell structure of the foams are comparable to their corresponding compressive strengths. Moreover, the thermogravimetry analysis showed that all the semirigid PU foams had approximately the same degradation temperature of about 250 to 440°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
匀泡剂对硬质聚氨酯泡沫孔径及冲击性能的影响   总被引:4,自引:0,他引:4  
通过改变配方中匀泡剂的用量,制备了一系列具有相同密度的硬质聚氨酯泡沫塑料(RPUF)。使用二维图像分析方法对其孔径进行了表征,结果显示其孔径分布在210~624μm范围。研究了冲击性能与孔径之间的关系,发现材料的冲击强度随孔径增大呈线性下降的趋势,同时其脆性增大而韧性降低。  相似文献   

19.
Crucial process modifications were shown necessary to improve the economics of cryogenic grinding of flexible polyurethane (PU) foam. It is concluded that foam densification prior to cryogenic processing was essential to reduce insulation effects. In comparative studies of foam and densified foam, increasing the density to ~800 kg/m3 resulted in dramatically reduced cryogen use and vastly improved output. Results indicated that cryogenic pulverization presents a significantly more economic solution than previously recognized. Particles produced by this method were added to foam formulations and effects of particle size and structure on compression properties and cell structure of resultant foams were studied. Particle sizes <100 μm gave similar compression properties and cell size to virgin foam at up to 10 parts by weight on 100 parts of polyol, but cell structure and compressive properties showed increasing divergence as particle size and addition concentration increased. Studies of alternative uses showed that the PU particles showed promise as fillers in rigid PU foam formulations and suggested an extending or reinforcing action in natural rubber vulcanizates.  相似文献   

20.
采用聚醚多元醇和阻燃聚合物多元醇为主要原料,制备了低密度及阻燃低密度高回弹聚氨酯泡沫,讨论了低密度高回弹聚氨酯泡沫性能及阻燃聚合物多元醇TM-300用量对聚氨酯泡沫性能的影响。结果表明,低密度高回弹泡沫密度可低至35kg/m3,性能与一般密度聚氨酯泡沫相当。随着TM-300用量增加,阻燃低密度高回弹聚氨酯泡沫的硬度和拉伸强度增加,撕裂强度和伸长率下降;TM-300可有效提高聚氨酯泡沫的阻燃性能,氧指数可达到32,各项性能均较优异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号